File size: 19,366 Bytes
f90cb2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "authorship_tag": "ABX9TyNi+Ewkxp2IZ8viyYUSIC21",
      "include_colab_link": true
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "gpuClass": "standard"
  },
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "view-in-github",
        "colab_type": "text"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/jsebdev/Stock_Predictor/blob/main/stock_predictor.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "from google.colab import drive\n",
        "drive.mount('/content/drive')\n",
        "project_path = '/content/drive/MyDrive/projects/Stock_Predicter'\n",
        "%cd $project_path"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Xr3Qozgfktoc",
        "outputId": "78396a70-6eaa-462b-f7ca-75e282dab940"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Mounted at /content/drive\n",
            "/content/drive/MyDrive/projects/Stock_Predicter\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# install dotenv\n",
        "!pip install python-dotenv"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "E0itUkoVeKYn",
        "outputId": "a876789d-096c-4301-e316-023f87e2e5de"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Collecting python-dotenv\n",
            "  Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n",
            "Installing collected packages: python-dotenv\n",
            "Successfully installed python-dotenv-1.0.0\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# install polygon client\n",
        "!pip install polygon-api-client"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "2bylenpXc1oB",
        "outputId": "c47ad32c-3c50-41d9-a6ce-c051fb6639b5"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
            "Collecting polygon-api-client\n",
            "  Downloading polygon_api_client-1.8.5-py3-none-any.whl (38 kB)\n",
            "Requirement already satisfied: urllib3<2.0.0,>=1.26.9 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (1.26.15)\n",
            "Collecting websockets<11.0,>=10.3\n",
            "  Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n",
            "\u001b[2K     \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m106.5/106.5 KB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
            "\u001b[?25hRequirement already satisfied: certifi<2023.0.0,>=2022.5.18 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (2022.12.7)\n",
            "Installing collected packages: websockets, polygon-api-client\n",
            "Successfully installed polygon-api-client-1.8.5 websockets-10.4\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "e8SQqogMQYLh"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "import matplotlib.pyplot as plt\n",
        "import pandas as pd\n",
        "import pandas_datareader as web\n",
        "import datetime as dt\n",
        "import yfinance as yfin\n",
        "\n",
        "from sklearn.preprocessing import MinMaxScaler\n",
        "from tensorflow.keras.models import Sequential\n",
        "from tensorflow.keras.layers import Dense, Dropout, LSTM\n",
        "from dotenv import dotenv_values\n",
        "from polygon import RESTClient\n"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "config = dotenv_values(\"env_stock_predictor\")\n",
        "POLIGON_API_KEY = config['POLIGON_API_KEY']"
      ],
      "metadata": {
        "id": "MwIQIS6GeSJr"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Select a company for now\n",
        "ticker = 'AAPL'\n",
        "\n",
        "start = dt.datetime(2013,1,1)\n",
        "end = dt.date.today()\n",
        "# end = dt.datetime(2023,3,15)\n",
        "\n",
        "# data = web.DataReader(ticker, 'yahoo', start, end) # This trows \"TypeError: string indices must be integers\"\n",
        "\n",
        "yfin.pdr_override()\n",
        "data = web.data.get_data_yahoo(ticker, start, end)\n",
        "print(data.tail())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "O6dtJpJwS5Eg",
        "outputId": "8782cb37-06ce-47c0-b352-f1f82a6db7de"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\r[*********************100%***********************]  1 of 1 completed\n",
            "                  Open        High         Low       Close   Adj Close  \\\n",
            "Date                                                                     \n",
            "2023-03-29  159.369995  161.050003  159.350006  160.770004  160.770004   \n",
            "2023-03-30  161.529999  162.470001  161.270004  162.360001  162.360001   \n",
            "2023-03-31  162.440002  165.000000  161.910004  164.899994  164.899994   \n",
            "2023-04-03  164.270004  166.289993  164.220001  166.169998  166.169998   \n",
            "2023-04-04  166.600006  166.839996  165.110001  165.630005  165.630005   \n",
            "\n",
            "              Volume  \n",
            "Date                  \n",
            "2023-03-29  51305700  \n",
            "2023-03-30  49501700  \n",
            "2023-03-31  68694700  \n",
            "2023-04-03  56976200  \n",
            "2023-04-04  46237900  \n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# using the poligon API\n",
        "poligon_client = RESTClient(api_key=POLIGON_API_KEY)"
      ],
      "metadata": {
        "id": "LEfjQ4cZi0tn"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=\"2023-01-09\", to=\"2023-01-15\")\n",
        "bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=start, to=end)\n"
      ],
      "metadata": {
        "id": "edWz4rdxdwqh"
      },
      "execution_count": null,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "for bar in bars[-5:]:\n",
        "  print(type(bar))\n",
        "  print(bar)\n",
        "  print(bar.timestamp)\n",
        "  print(dt.date.fromtimestamp(bar.timestamp/1000))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "IX_o3NTggblq",
        "outputId": "7a974d77-952e-425b-c702-e9a60fbb89be"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "<class 'polygon.rest.models.aggs.Agg'>\n",
            "Agg(open=152.81, high=153.47, low=151.83, close=152.87, volume=47204791.0, vwap=152.6973, timestamp=1678251600000, transactions=405203, otc=None)\n",
            "1678251600000\n",
            "2023-03-08\n",
            "<class 'polygon.rest.models.aggs.Agg'>\n",
            "Agg(open=153.559, high=154.535, low=150.225, close=150.59, volume=53833122.0, vwap=152.4689, timestamp=1678338000000, transactions=480909, otc=None)\n",
            "1678338000000\n",
            "2023-03-09\n",
            "<class 'polygon.rest.models.aggs.Agg'>\n",
            "Agg(open=150.21, high=150.94, low=147.6096, close=148.5, volume=68559600.0, vwap=149.0716, timestamp=1678424400000, transactions=611457, otc=None)\n",
            "1678424400000\n",
            "2023-03-10\n",
            "<class 'polygon.rest.models.aggs.Agg'>\n",
            "Agg(open=147.805, high=153.14, low=147.7, close=150.47, volume=84457122.0, vwap=151.1835, timestamp=1678680000000, transactions=760660, otc=None)\n",
            "1678680000000\n",
            "2023-03-13\n",
            "<class 'polygon.rest.models.aggs.Agg'>\n",
            "Agg(open=151.28, high=153.4, low=150.1, close=152.59, volume=72045893.0, vwap=152.1061, timestamp=1678766400000, transactions=565196, otc=None)\n",
            "1678766400000\n",
            "2023-03-14\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "print(type(spy))\n",
        "print(spy.head())"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "EMoXLT5vd8Ex",
        "outputId": "d3c00e06-bf0a-4384-a21d-643d72a6848c"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "<class 'pandas.core.frame.DataFrame'>\n",
            "                  Open        High         Low       Close   Adj Close  \\\n",
            "Date                                                                     \n",
            "2022-10-24  375.890015  380.059998  373.109985  378.869995  375.704315   \n",
            "2022-10-25  378.790009  385.250000  378.670013  384.920013  381.703735   \n",
            "2022-10-26  381.619995  387.579987  381.350006  382.019989  378.827972   \n",
            "2022-10-27  383.070007  385.000000  379.329987  379.980011  376.805023   \n",
            "2022-10-28  379.869995  389.519989  379.679993  389.019989  385.769470   \n",
            "\n",
            "               Volume  \n",
            "Date                   \n",
            "2022-10-24   85436900  \n",
            "2022-10-25   78846300  \n",
            "2022-10-26  104087300  \n",
            "2022-10-27   81971800  \n",
            "2022-10-28  100302000  \n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "df = web.DataReader('GE', 'yahoo', start='2019-09-10', end='2019-10-09')\n",
        "print(start)\n",
        "print(end)"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 353
        },
        "id": "THGxnQbSUgvw",
        "outputId": "82234614-328b-40b7-9024-fa32e20b2858"
      },
      "execution_count": null,
      "outputs": [
        {
          "output_type": "error",
          "ename": "TypeError",
          "evalue": "ignored",
          "traceback": [
            "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
            "\u001b[0;31mTypeError\u001b[0m                                 Traceback (most recent call last)",
            "\u001b[0;32m<ipython-input-17-078ffcb02a17>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mweb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'GE'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'yahoo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'2019-09-10'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'2019-10-09'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    205\u001b[0m                 \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    206\u001b[0m                     \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnew_arg_name\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_arg_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 207\u001b[0;31m             \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    208\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    209\u001b[0m         \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/data.py\u001b[0m in \u001b[0;36mDataReader\u001b[0;34m(name, data_source, start, end, retry_count, pause, session, api_key)\u001b[0m\n\u001b[1;32m    368\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    369\u001b[0m     \u001b[0;32mif\u001b[0m \u001b[0mdata_source\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"yahoo\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 370\u001b[0;31m         return YahooDailyReader(\n\u001b[0m\u001b[1;32m    371\u001b[0m             \u001b[0msymbols\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    372\u001b[0m             \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/base.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    251\u001b[0m         \u001b[0;31m# If a single symbol, (e.g., 'GOOG')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    252\u001b[0m         \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstring_types\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m             \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_read_one_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_params\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    254\u001b[0m         \u001b[0;31m# Or multiple symbols, (e.g., ['GOOG', 'AAPL', 'MSFT'])\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    255\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/yahoo/daily.py\u001b[0m in \u001b[0;36m_read_one_data\u001b[0;34m(self, url, params)\u001b[0m\n\u001b[1;32m    151\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    152\u001b[0m             \u001b[0mj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mptrn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDOTALL\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroup\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 153\u001b[0;31m             \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"context\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"dispatcher\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"stores\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"HistoricalPriceStore\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    154\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    155\u001b[0m             \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"No data fetched for symbol {} using {}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
            "\u001b[0;31mTypeError\u001b[0m: string indices must be integers"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "scaler = MinMaxScaler(feature_range=(0,1))\n",
        "scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1))\n",
        "prediction_days = 60\n",
        "\n",
        "x_train = []\n",
        "y_train = []\n",
        "\n",
        "for x in range()"
      ],
      "metadata": {
        "id": "ccV59ukvXaNF"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}