Spaces:
Runtime error
Runtime error
File size: 19,366 Bytes
f90cb2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyNi+Ewkxp2IZ8viyYUSIC21",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
},
"gpuClass": "standard"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/github/jsebdev/Stock_Predictor/blob/main/stock_predictor.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"source": [
"from google.colab import drive\n",
"drive.mount('/content/drive')\n",
"project_path = '/content/drive/MyDrive/projects/Stock_Predicter'\n",
"%cd $project_path"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "Xr3Qozgfktoc",
"outputId": "78396a70-6eaa-462b-f7ca-75e282dab940"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Mounted at /content/drive\n",
"/content/drive/MyDrive/projects/Stock_Predicter\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# install dotenv\n",
"!pip install python-dotenv"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "E0itUkoVeKYn",
"outputId": "a876789d-096c-4301-e316-023f87e2e5de"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting python-dotenv\n",
" Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n",
"Installing collected packages: python-dotenv\n",
"Successfully installed python-dotenv-1.0.0\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# install polygon client\n",
"!pip install polygon-api-client"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "2bylenpXc1oB",
"outputId": "c47ad32c-3c50-41d9-a6ce-c051fb6639b5"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n",
"Collecting polygon-api-client\n",
" Downloading polygon_api_client-1.8.5-py3-none-any.whl (38 kB)\n",
"Requirement already satisfied: urllib3<2.0.0,>=1.26.9 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (1.26.15)\n",
"Collecting websockets<11.0,>=10.3\n",
" Downloading websockets-10.4-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (106 kB)\n",
"\u001b[2K \u001b[90mβββββββββββββββββββββββββββββββββββββββ\u001b[0m \u001b[32m106.5/106.5 KB\u001b[0m \u001b[31m5.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
"\u001b[?25hRequirement already satisfied: certifi<2023.0.0,>=2022.5.18 in /usr/local/lib/python3.9/dist-packages (from polygon-api-client) (2022.12.7)\n",
"Installing collected packages: websockets, polygon-api-client\n",
"Successfully installed polygon-api-client-1.8.5 websockets-10.4\n"
]
}
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "e8SQqogMQYLh"
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pandas as pd\n",
"import pandas_datareader as web\n",
"import datetime as dt\n",
"import yfinance as yfin\n",
"\n",
"from sklearn.preprocessing import MinMaxScaler\n",
"from tensorflow.keras.models import Sequential\n",
"from tensorflow.keras.layers import Dense, Dropout, LSTM\n",
"from dotenv import dotenv_values\n",
"from polygon import RESTClient\n"
]
},
{
"cell_type": "code",
"source": [
"config = dotenv_values(\"env_stock_predictor\")\n",
"POLIGON_API_KEY = config['POLIGON_API_KEY']"
],
"metadata": {
"id": "MwIQIS6GeSJr"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Select a company for now\n",
"ticker = 'AAPL'\n",
"\n",
"start = dt.datetime(2013,1,1)\n",
"end = dt.date.today()\n",
"# end = dt.datetime(2023,3,15)\n",
"\n",
"# data = web.DataReader(ticker, 'yahoo', start, end) # This trows \"TypeError: string indices must be integers\"\n",
"\n",
"yfin.pdr_override()\n",
"data = web.data.get_data_yahoo(ticker, start, end)\n",
"print(data.tail())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "O6dtJpJwS5Eg",
"outputId": "8782cb37-06ce-47c0-b352-f1f82a6db7de"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"\r[*********************100%***********************] 1 of 1 completed\n",
" Open High Low Close Adj Close \\\n",
"Date \n",
"2023-03-29 159.369995 161.050003 159.350006 160.770004 160.770004 \n",
"2023-03-30 161.529999 162.470001 161.270004 162.360001 162.360001 \n",
"2023-03-31 162.440002 165.000000 161.910004 164.899994 164.899994 \n",
"2023-04-03 164.270004 166.289993 164.220001 166.169998 166.169998 \n",
"2023-04-04 166.600006 166.839996 165.110001 165.630005 165.630005 \n",
"\n",
" Volume \n",
"Date \n",
"2023-03-29 51305700 \n",
"2023-03-30 49501700 \n",
"2023-03-31 68694700 \n",
"2023-04-03 56976200 \n",
"2023-04-04 46237900 \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# using the poligon API\n",
"poligon_client = RESTClient(api_key=POLIGON_API_KEY)"
],
"metadata": {
"id": "LEfjQ4cZi0tn"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=\"2023-01-09\", to=\"2023-01-15\")\n",
"bars = poligon_client.get_aggs(ticker=ticker, multiplier=1, timespan=\"day\", from_=start, to=end)\n"
],
"metadata": {
"id": "edWz4rdxdwqh"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"for bar in bars[-5:]:\n",
" print(type(bar))\n",
" print(bar)\n",
" print(bar.timestamp)\n",
" print(dt.date.fromtimestamp(bar.timestamp/1000))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "IX_o3NTggblq",
"outputId": "7a974d77-952e-425b-c702-e9a60fbb89be"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"<class 'polygon.rest.models.aggs.Agg'>\n",
"Agg(open=152.81, high=153.47, low=151.83, close=152.87, volume=47204791.0, vwap=152.6973, timestamp=1678251600000, transactions=405203, otc=None)\n",
"1678251600000\n",
"2023-03-08\n",
"<class 'polygon.rest.models.aggs.Agg'>\n",
"Agg(open=153.559, high=154.535, low=150.225, close=150.59, volume=53833122.0, vwap=152.4689, timestamp=1678338000000, transactions=480909, otc=None)\n",
"1678338000000\n",
"2023-03-09\n",
"<class 'polygon.rest.models.aggs.Agg'>\n",
"Agg(open=150.21, high=150.94, low=147.6096, close=148.5, volume=68559600.0, vwap=149.0716, timestamp=1678424400000, transactions=611457, otc=None)\n",
"1678424400000\n",
"2023-03-10\n",
"<class 'polygon.rest.models.aggs.Agg'>\n",
"Agg(open=147.805, high=153.14, low=147.7, close=150.47, volume=84457122.0, vwap=151.1835, timestamp=1678680000000, transactions=760660, otc=None)\n",
"1678680000000\n",
"2023-03-13\n",
"<class 'polygon.rest.models.aggs.Agg'>\n",
"Agg(open=151.28, high=153.4, low=150.1, close=152.59, volume=72045893.0, vwap=152.1061, timestamp=1678766400000, transactions=565196, otc=None)\n",
"1678766400000\n",
"2023-03-14\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"print(type(spy))\n",
"print(spy.head())"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "EMoXLT5vd8Ex",
"outputId": "d3c00e06-bf0a-4384-a21d-643d72a6848c"
},
"execution_count": null,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
" Open High Low Close Adj Close \\\n",
"Date \n",
"2022-10-24 375.890015 380.059998 373.109985 378.869995 375.704315 \n",
"2022-10-25 378.790009 385.250000 378.670013 384.920013 381.703735 \n",
"2022-10-26 381.619995 387.579987 381.350006 382.019989 378.827972 \n",
"2022-10-27 383.070007 385.000000 379.329987 379.980011 376.805023 \n",
"2022-10-28 379.869995 389.519989 379.679993 389.019989 385.769470 \n",
"\n",
" Volume \n",
"Date \n",
"2022-10-24 85436900 \n",
"2022-10-25 78846300 \n",
"2022-10-26 104087300 \n",
"2022-10-27 81971800 \n",
"2022-10-28 100302000 \n"
]
}
]
},
{
"cell_type": "code",
"source": [
"df = web.DataReader('GE', 'yahoo', start='2019-09-10', end='2019-10-09')\n",
"print(start)\n",
"print(end)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 353
},
"id": "THGxnQbSUgvw",
"outputId": "82234614-328b-40b7-9024-fa32e20b2858"
},
"execution_count": null,
"outputs": [
{
"output_type": "error",
"ename": "TypeError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-17-078ffcb02a17>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mweb\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDataReader\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'GE'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'yahoo'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'2019-09-10'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mend\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'2019-10-09'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mend\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas/util/_decorators.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 205\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 206\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mnew_arg_name\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_arg_value\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 207\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 208\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 209\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mcast\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mF\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mwrapper\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/data.py\u001b[0m in \u001b[0;36mDataReader\u001b[0;34m(name, data_source, start, end, retry_count, pause, session, api_key)\u001b[0m\n\u001b[1;32m 368\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 369\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_source\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;34m\"yahoo\"\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 370\u001b[0;31m return YahooDailyReader(\n\u001b[0m\u001b[1;32m 371\u001b[0m \u001b[0msymbols\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 372\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mstart\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/base.py\u001b[0m in \u001b[0;36mread\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 251\u001b[0m \u001b[0;31m# If a single symbol, (e.g., 'GOOG')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mstring_types\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 253\u001b[0;31m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_read_one_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0murl\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mparams\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_params\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 254\u001b[0m \u001b[0;31m# Or multiple symbols, (e.g., ['GOOG', 'AAPL', 'MSFT'])\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[0;32melif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msymbols\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mDataFrame\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.9/dist-packages/pandas_datareader/yahoo/daily.py\u001b[0m in \u001b[0;36m_read_one_data\u001b[0;34m(self, url, params)\u001b[0m\n\u001b[1;32m 151\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 152\u001b[0m \u001b[0mj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mjson\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloads\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msearch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mptrn\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mresp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mre\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDOTALL\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroup\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 153\u001b[0;31m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"context\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"dispatcher\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"stores\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m\"HistoricalPriceStore\"\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 154\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 155\u001b[0m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"No data fetched for symbol {} using {}\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: string indices must be integers"
]
}
]
},
{
"cell_type": "code",
"source": [
"scaler = MinMaxScaler(feature_range=(0,1))\n",
"scaled_data = scaler.fit_transform(data['Close'].values.reshape(-1,1))\n",
"prediction_days = 60\n",
"\n",
"x_train = []\n",
"y_train = []\n",
"\n",
"for x in range()"
],
"metadata": {
"id": "ccV59ukvXaNF"
},
"execution_count": null,
"outputs": []
}
]
} |