Spaces:
Building
Building
File size: 16,955 Bytes
cff9619 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
from pymilvus import MilvusClient as Client
from pymilvus import FieldSchema, DataType
import json
import logging
from typing import Optional
from open_webui.retrieval.vector.main import (
VectorDBBase,
VectorItem,
SearchResult,
GetResult,
)
from open_webui.config import (
MILVUS_URI,
MILVUS_DB,
MILVUS_TOKEN,
MILVUS_INDEX_TYPE,
MILVUS_METRIC_TYPE,
MILVUS_HNSW_M,
MILVUS_HNSW_EFCONSTRUCTION,
MILVUS_IVF_FLAT_NLIST,
)
from open_webui.env import SRC_LOG_LEVELS
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
class MilvusClient(VectorDBBase):
def __init__(self):
self.collection_prefix = "open_webui"
if MILVUS_TOKEN is None:
self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB)
else:
self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB, token=MILVUS_TOKEN)
def _result_to_get_result(self, result) -> GetResult:
ids = []
documents = []
metadatas = []
for match in result:
_ids = []
_documents = []
_metadatas = []
for item in match:
_ids.append(item.get("id"))
_documents.append(item.get("data", {}).get("text"))
_metadatas.append(item.get("metadata"))
ids.append(_ids)
documents.append(_documents)
metadatas.append(_metadatas)
return GetResult(
**{
"ids": ids,
"documents": documents,
"metadatas": metadatas,
}
)
def _result_to_search_result(self, result) -> SearchResult:
ids = []
distances = []
documents = []
metadatas = []
for match in result:
_ids = []
_distances = []
_documents = []
_metadatas = []
for item in match:
_ids.append(item.get("id"))
# normalize milvus score from [-1, 1] to [0, 1] range
# https://milvus.io/docs/de/metric.md
_dist = (item.get("distance") + 1.0) / 2.0
_distances.append(_dist)
_documents.append(item.get("entity", {}).get("data", {}).get("text"))
_metadatas.append(item.get("entity", {}).get("metadata"))
ids.append(_ids)
distances.append(_distances)
documents.append(_documents)
metadatas.append(_metadatas)
return SearchResult(
**{
"ids": ids,
"distances": distances,
"documents": documents,
"metadatas": metadatas,
}
)
def _create_collection(self, collection_name: str, dimension: int):
schema = self.client.create_schema(
auto_id=False,
enable_dynamic_field=True,
)
schema.add_field(
field_name="id",
datatype=DataType.VARCHAR,
is_primary=True,
max_length=65535,
)
schema.add_field(
field_name="vector",
datatype=DataType.FLOAT_VECTOR,
dim=dimension,
description="vector",
)
schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
schema.add_field(
field_name="metadata", datatype=DataType.JSON, description="metadata"
)
index_params = self.client.prepare_index_params()
# Use configurations from config.py
index_type = MILVUS_INDEX_TYPE.upper()
metric_type = MILVUS_METRIC_TYPE.upper()
log.info(f"Using Milvus index type: {index_type}, metric type: {metric_type}")
index_creation_params = {}
if index_type == "HNSW":
index_creation_params = {
"M": MILVUS_HNSW_M,
"efConstruction": MILVUS_HNSW_EFCONSTRUCTION,
}
log.info(f"HNSW params: {index_creation_params}")
elif index_type == "IVF_FLAT":
index_creation_params = {"nlist": MILVUS_IVF_FLAT_NLIST}
log.info(f"IVF_FLAT params: {index_creation_params}")
elif index_type in ["FLAT", "AUTOINDEX"]:
log.info(f"Using {index_type} index with no specific build-time params.")
else:
log.warning(
f"Unsupported MILVUS_INDEX_TYPE: '{index_type}'. "
f"Supported types: HNSW, IVF_FLAT, FLAT, AUTOINDEX. "
f"Milvus will use its default for the collection if this type is not directly supported for index creation."
)
# For unsupported types, pass the type directly to Milvus; it might handle it or use a default.
# If Milvus errors out, the user needs to correct the MILVUS_INDEX_TYPE env var.
index_params.add_index(
field_name="vector",
index_type=index_type,
metric_type=metric_type,
params=index_creation_params,
)
self.client.create_collection(
collection_name=f"{self.collection_prefix}_{collection_name}",
schema=schema,
index_params=index_params,
)
log.info(
f"Successfully created collection '{self.collection_prefix}_{collection_name}' with index type '{index_type}' and metric '{metric_type}'."
)
def has_collection(self, collection_name: str) -> bool:
# Check if the collection exists based on the collection name.
collection_name = collection_name.replace("-", "_")
return self.client.has_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
)
def delete_collection(self, collection_name: str):
# Delete the collection based on the collection name.
collection_name = collection_name.replace("-", "_")
return self.client.drop_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
)
def search(
self, collection_name: str, vectors: list[list[float | int]], limit: int
) -> Optional[SearchResult]:
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
collection_name = collection_name.replace("-", "_")
# For some index types like IVF_FLAT, search params like nprobe can be set.
# Example: search_params = {"nprobe": 10} if using IVF_FLAT
# For simplicity, not adding configurable search_params here, but could be extended.
result = self.client.search(
collection_name=f"{self.collection_prefix}_{collection_name}",
data=vectors,
limit=limit,
output_fields=["data", "metadata"],
# search_params=search_params # Potentially add later if needed
)
return self._result_to_search_result(result)
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
# Construct the filter string for querying
collection_name = collection_name.replace("-", "_")
if not self.has_collection(collection_name):
log.warning(
f"Query attempted on non-existent collection: {self.collection_prefix}_{collection_name}"
)
return None
filter_string = " && ".join(
[
f'metadata["{key}"] == {json.dumps(value)}'
for key, value in filter.items()
]
)
max_limit = 16383 # The maximum number of records per request
all_results = []
if limit is None:
# Milvus default limit for query if not specified is 16384, but docs mention iteration.
# Let's set a practical high number if "all" is intended, or handle true pagination.
# For now, if limit is None, we'll fetch in batches up to a very large number.
# This part could be refined based on expected use cases for "get all".
# For this function signature, None implies "as many as possible" up to Milvus limits.
limit = (
16384 * 10
) # A large number to signify fetching many, will be capped by actual data or max_limit per call.
log.info(
f"Limit not specified for query, fetching up to {limit} results in batches."
)
# Initialize offset and remaining to handle pagination
offset = 0
remaining = limit
try:
log.info(
f"Querying collection {self.collection_prefix}_{collection_name} with filter: '{filter_string}', limit: {limit}"
)
# Loop until there are no more items to fetch or the desired limit is reached
while remaining > 0:
current_fetch = min(
max_limit, remaining if isinstance(remaining, int) else max_limit
)
log.debug(
f"Querying with offset: {offset}, current_fetch: {current_fetch}"
)
results = self.client.query(
collection_name=f"{self.collection_prefix}_{collection_name}",
filter=filter_string,
output_fields=[
"id",
"data",
"metadata",
], # Explicitly list needed fields. Vector not usually needed in query.
limit=current_fetch,
offset=offset,
)
if not results:
log.debug("No more results from query.")
break
all_results.extend(results)
results_count = len(results)
log.debug(f"Fetched {results_count} results in this batch.")
if isinstance(remaining, int):
remaining -= results_count
offset += results_count
# Break the loop if the results returned are less than the requested fetch count (means end of data)
if results_count < current_fetch:
log.debug(
"Fetched less than requested, assuming end of results for this query."
)
break
log.info(f"Total results from query: {len(all_results)}")
return self._result_to_get_result([all_results])
except Exception as e:
log.exception(
f"Error querying collection {self.collection_prefix}_{collection_name} with filter '{filter_string}' and limit {limit}: {e}"
)
return None
def get(self, collection_name: str) -> Optional[GetResult]:
# Get all the items in the collection. This can be very resource-intensive for large collections.
collection_name = collection_name.replace("-", "_")
log.warning(
f"Fetching ALL items from collection '{self.collection_prefix}_{collection_name}'. This might be slow for large collections."
)
# Using query with a trivial filter to get all items.
# This will use the paginated query logic.
return self.query(collection_name=collection_name, filter={}, limit=None)
def insert(self, collection_name: str, items: list[VectorItem]):
# Insert the items into the collection, if the collection does not exist, it will be created.
collection_name = collection_name.replace("-", "_")
if not self.client.has_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
):
log.info(
f"Collection {self.collection_prefix}_{collection_name} does not exist. Creating now."
)
if not items:
log.error(
f"Cannot create collection {self.collection_prefix}_{collection_name} without items to determine dimension."
)
raise ValueError(
"Cannot create Milvus collection without items to determine vector dimension."
)
self._create_collection(
collection_name=collection_name, dimension=len(items[0]["vector"])
)
log.info(
f"Inserting {len(items)} items into collection {self.collection_prefix}_{collection_name}."
)
return self.client.insert(
collection_name=f"{self.collection_prefix}_{collection_name}",
data=[
{
"id": item["id"],
"vector": item["vector"],
"data": {"text": item["text"]},
"metadata": item["metadata"],
}
for item in items
],
)
def upsert(self, collection_name: str, items: list[VectorItem]):
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
collection_name = collection_name.replace("-", "_")
if not self.client.has_collection(
collection_name=f"{self.collection_prefix}_{collection_name}"
):
log.info(
f"Collection {self.collection_prefix}_{collection_name} does not exist for upsert. Creating now."
)
if not items:
log.error(
f"Cannot create collection {self.collection_prefix}_{collection_name} for upsert without items to determine dimension."
)
raise ValueError(
"Cannot create Milvus collection for upsert without items to determine vector dimension."
)
self._create_collection(
collection_name=collection_name, dimension=len(items[0]["vector"])
)
log.info(
f"Upserting {len(items)} items into collection {self.collection_prefix}_{collection_name}."
)
return self.client.upsert(
collection_name=f"{self.collection_prefix}_{collection_name}",
data=[
{
"id": item["id"],
"vector": item["vector"],
"data": {"text": item["text"]},
"metadata": item["metadata"],
}
for item in items
],
)
def delete(
self,
collection_name: str,
ids: Optional[list[str]] = None,
filter: Optional[dict] = None,
):
# Delete the items from the collection based on the ids or filter.
collection_name = collection_name.replace("-", "_")
if not self.has_collection(collection_name):
log.warning(
f"Delete attempted on non-existent collection: {self.collection_prefix}_{collection_name}"
)
return None
if ids:
log.info(
f"Deleting items by IDs from {self.collection_prefix}_{collection_name}. IDs: {ids}"
)
return self.client.delete(
collection_name=f"{self.collection_prefix}_{collection_name}",
ids=ids,
)
elif filter:
filter_string = " && ".join(
[
f'metadata["{key}"] == {json.dumps(value)}'
for key, value in filter.items()
]
)
log.info(
f"Deleting items by filter from {self.collection_prefix}_{collection_name}. Filter: {filter_string}"
)
return self.client.delete(
collection_name=f"{self.collection_prefix}_{collection_name}",
filter=filter_string,
)
else:
log.warning(
f"Delete operation on {self.collection_prefix}_{collection_name} called without IDs or filter. No action taken."
)
return None
def reset(self):
# Resets the database. This will delete all collections and item entries that match the prefix.
log.warning(
f"Resetting Milvus: Deleting all collections with prefix '{self.collection_prefix}'."
)
collection_names = self.client.list_collections()
deleted_collections = []
for collection_name_full in collection_names:
if collection_name_full.startswith(self.collection_prefix):
try:
self.client.drop_collection(collection_name=collection_name_full)
deleted_collections.append(collection_name_full)
log.info(f"Deleted collection: {collection_name_full}")
except Exception as e:
log.error(f"Error deleting collection {collection_name_full}: {e}")
log.info(f"Milvus reset complete. Deleted collections: {deleted_collections}")
|