File size: 16,303 Bytes
3724ac8
 
 
 
 
 
 
 
 
 
 
 
c3835de
3724ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import os
import pandas as pd
from datetime import date
import gradio as gr
import networkx as nx
import ast
import plotly.graph_objects as go
import plotly.express as px

# Load the CSV file
df = pd.read_csv("https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/ETOHA/storylines/emdat2.csv", sep=',', header=0,
                 dtype=str, encoding='utf-8')
df = df.drop_duplicates(subset='DisNo.', keep='first')  #I drop all duplicates for column "DisNo.", keeping the first occurrence


def try_parse_date(y, m, d):
    try:
        if not y or not m or not d:
            return None
        return date(int(float(y)), int(float(m)), int(float(d)))
    except (ValueError, TypeError):
        return None


def plot_cgraph(grp):
    if not grp:
        return None
    source, relations, target = list(zip(*grp))
    kg_df = pd.DataFrame({'source': source, 'target': target, 'edge': relations})
    G = nx.from_pandas_edgelist(kg_df, "source", "target", edge_attr='edge', create_using=nx.MultiDiGraph())

    pos = nx.spring_layout(G, k=1.5, iterations=100)

    # Separate edges based on their color
    edge_colors_dict = {"causes": "red", "prevents": "green"}
    traces = []

    for color in edge_colors_dict.values():
        edge_x = []
        edge_y = []
        for u, v, key in G.edges(keys=True):
            current_color = edge_colors_dict.get(G[u][v][key]['edge'], 'black')
            if current_color == color:
                x0, y0 = pos[u]
                x1, y1 = pos[v]
                edge_x.extend([x0, x1, None])
                edge_y.extend([y0, y1, None])

        trace = go.Scatter(x=edge_x, y=edge_y, line=dict(width=2, color=color), hoverinfo='none', mode='lines')
        traces.append(trace)

    node_x = []
    node_y = []
    node_text = []
    for node in G.nodes():
        x, y = pos[node]
        node_x.append(x)
        node_y.append(y)
        node_text.append(node)

    node_trace = go.Scatter(
        x=node_x, y=node_y, mode='markers+text', text=node_text,
        marker=dict(size=10, color='skyblue', line_width=2),
        textposition="top center", hoverinfo='text'
    )

    traces.append(node_trace)

    fig = go.Figure(data=traces,
                    layout=go.Layout(showlegend=False,
                                     hovermode='closest',
                                     margin=dict(b=20, l=5, r=5, t=40)))

    return fig


def display_info(selected_row_str, country, year, month, day):
    additional_fields = [
        "Country", "ISO", "Subregion", "Region", "Location", "Origin",
        "Disaster Group", "Disaster Subgroup", "Disaster Type", "Disaster Subtype", "External IDs",
        "Event Name", "Associated Types", "OFDA/BHA Response", "Appeal", "Declaration",
        "AID Contribution ('000 US$)", "Magnitude", "Magnitude Scale", "Latitude",
        "Longitude", "River Basin", "Total Deaths", "No. Injured",
        "No. Affected", "No. Homeless", "Total Affected",
        "Reconstruction Costs ('000 US$)", "Reconstruction Costs, Adjusted ('000 US$)",
        "Insured Damage ('000 US$)", "Insured Damage, Adjusted ('000 US$)",
        "Total Damage ('000 US$)", "Total Damage, Adjusted ('000 US$)", "CPI",
        "Admin Units",
    ]

    if selected_row_str is None or selected_row_str == '':
        return ('', '', '', '', '', '', '', None, '', '') + tuple([''] * len(additional_fields))

    filtered_df = df
    if country:
        filtered_df = filtered_df[filtered_df['Country'] == country]

    selected_date = try_parse_date(year, month, day)

    if selected_date:
        filtered_df = filtered_df[filtered_df.apply(
            lambda row: (
                    (try_parse_date(row['Start Year'], "01" if row['Start Month'] == "" else row['Start Month'],
                                    "01" if row['Start Day'] == "" else row['Start Day']) is not None) and
                    (try_parse_date(row['End Year'], "01" if row['End Month'] == "" else row['End Month'],
                                    "01" if row['End Day'] == "" else row['End Day']) is not None) and
                    (try_parse_date(row['Start Year'], "01" if row['Start Month'] == "" else row['Start Month'],
                                    "01" if row['Start Day'] == "" else row['Start Day']) <= selected_date <=
                     try_parse_date(row['End Year'], "01" if row['End Month'] == "" else row['End Month'],
                                    "01" if row['End Day'] == "" else row['End Day']))
            ), axis=1)]
    else:
        if year:
            sstart = None
            eend = None
            if month:
                try:
                    sstart = try_parse_date(year, month, "01")
                    eend = try_parse_date(year, int(float(month)) + 1, "01")
                except Exception as err:
                    sstart = None
                    eend = None

                if sstart and eend:
                    filtered_df = filtered_df[filtered_df.apply(
                        lambda row: (
                                (try_parse_date(row['Start Year'],
                                                "01" if row['Start Month'] == "" else row['Start Month'],
                                                "01" if row['Start Day'] == "" else row['Start Day']) is not None) and
                                (sstart <= try_parse_date(row['Start Year'],
                                                          "01" if row['Start Month'] == "" else row['Start Month'],
                                                          "01" if row['Start Day'] == "" else row['Start Day']) < eend)
                        ), axis=1)]
            else:
                try:
                    sstart = try_parse_date(year, "01", "01")
                    eend = try_parse_date(year, "12", "31")
                except Exception as err:
                    sstart = None
                    eend = None

                if sstart and eend:
                    filtered_df = filtered_df[filtered_df.apply(
                        lambda row: (
                                (try_parse_date(row['Start Year'],
                                                "01" if row['Start Month'] == "" else row['Start Month'],
                                                "01" if row['Start Day'] == "" else row['Start Day']) is not None) and
                                (sstart <= try_parse_date(row['Start Year'],
                                                          "01" if row['Start Month'] == "" else row['Start Month'],
                                                          "01" if row['Start Day'] == "" else row['Start Day']) <= eend)
                        ), axis=1)]

    row_data = filtered_df[filtered_df['DisNo.'] == selected_row_str].squeeze()

    if not row_data.empty:
        key_information = row_data.get('key information', '')
        severity = row_data.get('severity', '')
        key_drivers = row_data.get('key drivers', '')
        impacts_exposure_vulnerability = row_data.get('main impacts, exposure, and vulnerability', '')
        likelihood_multi_hazard = row_data.get('likelihood of multi-hazard risks', '')
        best_practices = row_data.get('best practices for managing this risk', '')
        recommendations = row_data.get('recommendations and supportive measures for recovery', '')
        causal_graph_caption = row_data.get('causal graph', '')
        grp = ast.literal_eval(causal_graph_caption) if causal_graph_caption else []
        causal_graph_plot = plot_cgraph(grp)

        start_date = try_parse_date(row_data['Start Year'], row_data['Start Month'], row_data['Start Day'])
        start_date_str = start_date.strftime('%Y-%m-%d') if start_date else 'N/A'

        end_date = try_parse_date(row_data['End Year'], row_data['End Month'], row_data['End Day'])
        end_date_str = end_date.strftime('%Y-%m-%d') if end_date else 'N/A'

        additional_data = [row_data.get(field, '') for field in additional_fields]

        return (
            key_information,
            severity,
            key_drivers,
            impacts_exposure_vulnerability,
            likelihood_multi_hazard,
            best_practices,
            recommendations,
            causal_graph_plot,
            start_date_str,
            end_date_str
        ) + tuple(additional_data)
    else:
        return ('', '', '', '', '', '', '', None, '', '') + tuple([''] * len(additional_fields))


def update_row_dropdown(country, year, month, day):
    filtered_df = df
    if country:
        filtered_df = filtered_df[filtered_df['Country'] == country]

    selected_date = try_parse_date(year, month, day)

    if selected_date:
        filtered_df = filtered_df[filtered_df.apply(
            lambda row: (
                    (try_parse_date(row['Start Year'], "01" if row['Start Month'] == "" else row['Start Month'],
                                    "01" if row['Start Day'] == "" else row['Start Day']) is not None) and
                    (try_parse_date(row['End Year'], "01" if row['End Month'] == "" else row['End Month'],
                                    "01" if row['End Day'] == "" else row['End Day']) is not None) and
                    (try_parse_date(row['Start Year'], "01" if row['Start Month'] == "" else row['Start Month'],
                                    "01" if row['Start Day'] == "" else row['Start Day']) <= selected_date <=
                     try_parse_date(row['End Year'], "01" if row['End Month'] == "" else row['End Month'],
                                    "01" if row['End Day'] == "" else row['End Day']))
            ), axis=1)]
    else:
        if year:
            sstart = None
            eend = None
            if month:
                try:
                    sstart = try_parse_date(year, month, "01")
                    eend = try_parse_date(year, int(float(month)) + 1, "01")
                except Exception as err:
                    sstart = None
                    eend = None

                if sstart and eend:
                    filtered_df = filtered_df[filtered_df.apply(
                        lambda row: (
                                (try_parse_date(row['Start Year'],
                                                "01" if row['Start Month'] == "" else row['Start Month'],
                                                "01" if row['Start Day'] == "" else row['Start Day']) is not None) and
                                (sstart <= try_parse_date(row['Start Year'],
                                                          "01" if row['Start Month'] == "" else row['Start Month'],
                                                          "01" if row['Start Day'] == "" else row['Start Day']) < eend)
                        ), axis=1)]
            else:
                try:
                    sstart = try_parse_date(year, "01", "01")
                    eend = try_parse_date(year, "12", "31")
                except Exception as err:
                    sstart = None
                    eend = None

                if sstart and eend:
                    filtered_df = filtered_df[filtered_df.apply(
                        lambda row: (
                                (try_parse_date(row['Start Year'],
                                                "01" if row['Start Month'] == "" else row['Start Month'],
                                                "01" if row['Start Day'] == "" else row['Start Day']) is not None) and
                                (sstart <= try_parse_date(row['Start Year'],
                                                          "01" if row['Start Month'] == "" else row['Start Month'],
                                                          "01" if row['Start Day'] == "" else row['Start Day']) <= eend)
                        ), axis=1)]

    choices = filtered_df['DisNo.'].tolist() if not filtered_df.empty else []
    return gr.update(choices=choices, value=choices[0] if choices else None)


def build_interface():
    with gr.Blocks() as interface:
        gr.Markdown("## From Data to Narratives: AI-Enhanced Disaster and Health Threats Storylines")
        gr.Markdown(
            "This Gradio app complements Health Threats and Disaster event data... <br>"
            "Select an event data below..."
        )

        if not df.empty:
            start_years = df["Start Year"].dropna().unique()
            end_years = df["End Year"].dropna().unique()
            years = set(start_years.astype(int).tolist() + end_years.astype(int).tolist())
            year_choices = sorted(years)
        else:
            year_choices = []

        country_dropdown = gr.Dropdown(choices=[''] + df['Country'].unique().tolist(), label="Select Country")
        year_dropdown = gr.Dropdown(choices=[""] + [str(year) for year in year_choices], label="Select Year")
        month_dropdown = gr.Dropdown(choices=[""] + [f"{i:02d}" for i in range(1, 13)], label="Select Month")
        day_dropdown = gr.Dropdown(choices=[""] + [f"{i:02d}" for i in range(1, 32)], label="Select Day")
        row_dropdown = gr.Dropdown(choices=[], label="Select Disaster Event #", interactive=True)

        additional_fields = [
            "Country", "ISO", "Subregion", "Region", "Location", "Origin",
            "Disaster Group", "Disaster Subgroup", "Disaster Type", "Disaster Subtype", "External IDs",
            "Event Name", "Associated Types", "OFDA/BHA Response", "Appeal", "Declaration",
            "AID Contribution ('000 US$)", "Magnitude", "Magnitude Scale", "Latitude",
            "Longitude", "River Basin", "Total Deaths", "No. Injured",
            "No. Affected", "No. Homeless", "Total Affected",
            "Reconstruction Costs ('000 US$)", "Reconstruction Costs, Adjusted ('000 US$)",
            "Insured Damage ('000 US$)", "Insured Damage, Adjusted ('000 US$)",
            "Total Damage ('000 US$)", "Total Damage, Adjusted ('000 US$)", "CPI",
            "Admin Units",
        ]

        with gr.Row():
            with gr.Column():
                country_dropdown
                year_dropdown
                month_dropdown
                day_dropdown
                row_dropdown

                outputs = [
                    gr.Textbox(label="Key Information", interactive=False),
                    gr.Textbox(label="Severity", interactive=False),
                    gr.Textbox(label="Key Drivers", interactive=False),
                    gr.Textbox(label="Main Impacts, Exposure, and Vulnerability", interactive=False),
                    gr.Textbox(label="Likelihood of Multi-Hazard Risks", interactive=False),
                    gr.Textbox(label="Best Practices for Managing This Risk", interactive=False),
                    gr.Textbox(label="Recommendations and Supportive Measures for Recovery", interactive=False),
                    gr.Plot(label="Causal Graph")
                ]

            with gr.Column():
                outputs.extend([
                    gr.Textbox(label="Start Date", interactive=False),
                    gr.Textbox(label="End Date", interactive=False)
                ])
                for field in additional_fields:
                    outputs.append(gr.Textbox(label=field, interactive=False))

        country_dropdown.change(
            fn=update_row_dropdown,
            inputs=[country_dropdown, year_dropdown, month_dropdown, day_dropdown],
            outputs=row_dropdown
        )
        year_dropdown.change(
            fn=update_row_dropdown,
            inputs=[country_dropdown, year_dropdown, month_dropdown, day_dropdown],
            outputs=row_dropdown
        )
        month_dropdown.change(
            fn=update_row_dropdown,
            inputs=[country_dropdown, year_dropdown, month_dropdown, day_dropdown],
            outputs=row_dropdown
        )
        day_dropdown.change(
            fn=update_row_dropdown,
            inputs=[country_dropdown, year_dropdown, month_dropdown, day_dropdown],
            outputs=row_dropdown
        )

        row_dropdown.change(
            fn=display_info,
            inputs=[row_dropdown, country_dropdown, year_dropdown, month_dropdown, day_dropdown],
            outputs=outputs
        )

    return interface


app = build_interface()
app.launch()