File size: 6,470 Bytes
6cfdc8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d59687
 
 
 
 
 
 
 
6cfdc8d
1d59687
6cfdc8d
 
 
 
 
 
 
 
 
 
 
1d59687
6cfdc8d
 
 
 
c289b72
 
 
 
 
6cfdc8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c289b72
1d59687
 
 
 
 
 
 
 
 
 
 
6cfdc8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d59687
6cfdc8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d59687
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
from transformers import pipeline
import pandas as pd
import matplotlib.pyplot as plt
from wordcloud import WordCloud
import plotly.express as px

# Initialize sentiment analysis pipeline
sentiment_pipeline = pipeline("sentiment-analysis", model='distilbert-base-uncased-finetuned-sst-2-english')

def categorize_sentiment(score):
    emoji_mapping = {
        'Highly Dissatisfied': '😑',
        'Dissatisfied': '😞',
        'Neutral': '😐',
        'Satisfied': '😊',
        'Highly Satisfied': 'πŸ˜„'
    }

    if score >= 0.8:
        return 'Highly Satisfied', emoji_mapping['Highly Satisfied']
    elif score >= 0.1:
        return 'Satisfied', emoji_mapping['Satisfied']
    elif score >= -0.1:
        return 'Neutral', emoji_mapping['Neutral']
    elif score >= -0.8:
        return 'Dissatisfied', emoji_mapping['Dissatisfied']
    else:
        return 'Highly Dissatisfied', emoji_mapping['Highly Dissatisfied']

def analyze_sentiment(input_text):
    result = sentiment_pipeline(input_text)[0]
    label = result['label']
    score = result['score']

    if label == "NEGATIVE":
        score = -score  # Make the score negative if the label is negative

    emoji = "😊" if label == "POSITIVE" else "😞"
    sentiment_label_with_emoji = f'{label} {emoji}'
    sentiment_category, emoji = categorize_sentiment(score)

    return str(score), sentiment_label_with_emoji, sentiment_category

def analyze_sentiments_from_excel(file):
    try:
        df = pd.read_excel(file.name)
    except Exception as e:
        return str(e), None, None, None, None  # Return error message if file cannot be read

    results = []

    for text in df['Text']:
        result = sentiment_pipeline(text)[0]
        label = result['label']
        score = result['score']

        if label == "POSITIVE":
            score = abs(score)
        else:
            score = -abs(score)

        sentiment_label, emoji = categorize_sentiment(score)
        results.append((text, score, label, sentiment_label, emoji))

    results_df = pd.DataFrame(results, columns=['Text', 'Sentiment Score', 'Sentiment Label', 'Sentiment Category', 'Emoji'])

    # Calculate percentages for each sentiment category
    sentiment_counts = results_df['Sentiment Category'].value_counts(normalize=True) * 100

    # Create pie chart for sentiment labels
    fig_labels = px.pie(results_df, names='Sentiment Label', title='Sentiment Label Distribution')

    # Create histogram for sentiment scores
    fig_scores = px.histogram(results_df, x='Sentiment Score', title='Sentiment Score Distribution')

    # Generate Word Cloud
    text = " ".join(results_df['Text'].tolist())
    wordcloud = WordCloud(width=800, height=400, random_state=21, max_font_size=110).generate(text)
    plt.figure(figsize=(12, 8))
    plt.imshow(wordcloud, interpolation="bilinear")
    plt.axis('off')
    plt.title('Word Cloud')
    plt.tight_layout()
    wordcloud_fig = plt

    return results_df, sentiment_counts, fig_labels, fig_scores, wordcloud_fig


def switch_app(app_name):
    if app_name == "Sentiment Analysis":
        iface1.show()
        iface2.hide()
    else:
        iface1.hide()
        iface2.show()

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(lines=5, label="Input Text", placeholder="Kindly type in your product review")
            output_text = [
                gr.Textbox(label="Sentiment Score"),
                gr.Textbox(label="Sentiment Label"),
                gr.HTML(label="Sentiment Category")
            ]
            iface1 = gr.Interface(analyze_sentiment,
                                 inputs=input_text,
                                 outputs=output_text,
                                 title='<span style="color: yellow">Sentiment Analysis</span>',
                                 description='Explore the Emotions in Text. Experience the power of sentiment analysis with our tool. Get precise sentiment scores, emotive emojis, and categorized sentiments for any text.',
                                 theme='dark',
                                 css="""body {background-color: #121212; font-family: Arial, sans-serif;}
                                      .gradio {box-shadow: none; border-radius: 10px;}
                                      .input {background-color: #1E1E1E; color: #FFFFFF; border: none;}
                                      .output {background-color: #1E1E1E; color: #FFFFFF; border: none;}
                                      .output p {margin: 5px;}
                                      .output div {margin: 5px;}
                                      .output .highlight {padding: 5px; border-radius: 5px;}""")

        with gr.Column():
            file = gr.File(label="Upload Excel file")
            output_text = [
                gr.Dataframe(label="Text Analysis"),
                gr.Textbox(label="Sentiment Category"),
                gr.Plot(label="Sentiment Label"),
                gr.Plot(label="Sentiment Score"),
                gr.Plot(label="Word Cloud")
            ]
            iface2 = gr.Interface(analyze_sentiments_from_excel,
                                 inputs=file,
                                 outputs=output_text,
                                 title='<span style="color: yellow">Sentiment Analysis from Excel</span>',
                                 description='Upload an Excel file with sentiment texts and predict sentiment scores and labels. Analyze the sentiment distribution.',
                                 theme='dark',
                                 css="""body {background-color: #121212; font-family: Arial, sans-serif;}
                                      .gradio {box-shadow: none; border-radius: 10px;}
                                      .input {background-color: #1E1E1E; color: #FFFFFF; border: none;}
                                      .output {background-color: #1E1E1E; color: #FFFFFF; border: none;}
                                      .output p {margin: 5px;}
                                      .output div {margin: 5px;}
                                      .output .highlight {padding: 5px; border-radius: 5px;}""")

    with gr.Row():
        switch_button = gr.Button("Switch App")
        switch_button.click(switch_app, inputs=gr.Dropdown(["Sentiment Analysis", "Sentiment Analysis from Excel"], label="Select App"), outputs=None)

demo.launch()