Spaces:
Sleeping
Sleeping
File size: 4,508 Bytes
0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Copyright 2023 by Jan Philip Wahle, https://jpwahle.com/
# All rights reserved.
import os
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
from scipy.stats import gaussian_kde
dirname = os.path.dirname(__file__)
# Load the csv file into a pandas DataFrame
papers_df = pd.read_csv(
os.path.join(dirname, "data/nlp_papers_field_diversity.csv")
)
# Compute the mean CFDI
mean_cfdi = papers_df["incoming_diversity"].mean()
# Compute the mean CADI
mean_citation_ages = []
# Open the file and read the content in a list
with open(
os.path.join(dirname, "data/nlp_papers_citation_age.txt"),
"r",
encoding="utf-8",
) as filehandle:
for line in filehandle:
temp = float(line[:-1])
mean_citation_ages.append(temp)
def generate_cfdi_plot(input_cfdi, compute_type="paper"):
"""
Function to generate a plot for CFDI
"""
# Using kdeplot to fill the distribution curve
sns.set(font_scale=1.3, style="whitegrid")
data = papers_df[papers_df["incoming_diversity"] > 0]["incoming_diversity"]
kde = gaussian_kde(data)
x_vals = np.linspace(data.min(), data.max(), 1000)
y_vals = kde.evaluate(x_vals)
fig, ax = plt.subplots() # create a new figure and axis
ax.fill_between(x_vals, y_vals, color="skyblue", alpha=0.3)
ax.plot(x_vals, y_vals, color="skyblue", linewidth=2, label="Distribution")
interpolated_y_cfdi = np.interp(input_cfdi, x_vals, y_vals)
ax.scatter(
input_cfdi,
interpolated_y_cfdi,
c="r",
marker="*",
linewidths=2,
zorder=2,
s=32,
)
ax.vlines(
input_cfdi,
0,
interpolated_y_cfdi,
color="tomato",
ls="--",
lw=1.5,
)
epsilon = 0.005
# Compute the average and plot it as a light grey vertical line
mean_val = np.mean(data)
# Interpolate the y value for the mean
interpolated_y_mean = np.interp(mean_val, x_vals, y_vals)
ax.vlines(mean_val, 0, interpolated_y_mean, color="grey", ls="--", lw=1.5)
ax.text(
mean_val + epsilon,
interpolated_y_mean + epsilon,
"Avg.",
{"color": "grey", "fontsize": 13},
ha="left", # Horizontal alignment
)
ax.text(
input_cfdi + epsilon,
interpolated_y_cfdi + epsilon,
f"This {compute_type}",
{"color": "#DC143C", "fontsize": 13},
ha="left", # Horizontal alignment
)
ax.set_xlabel("Citation Field Diversity Index (CFDI)", fontsize=15)
ax.set_ylabel("Density", fontsize=15)
sns.despine(left=True, bottom=True, right=True, top=True)
return fig
def generate_maoc_plot(input_maoc, compute_type="paper"):
"""
Function to generate a plot for MAOC
"""
# Using kdeplot to fill the distribution curve
sns.set(font_scale=1.3, style="whitegrid")
data = pd.DataFrame(mean_citation_ages)[0]
kde = gaussian_kde(data)
x_vals = np.linspace(data.min(), data.max(), 1000)
y_vals = kde.evaluate(x_vals)
fig, ax = plt.subplots() # create a new figure and axis
ax.fill_between(x_vals, y_vals, color="skyblue", alpha=0.3)
ax.plot(x_vals, y_vals, color="skyblue", linewidth=2, label="Distribution")
interpolated_y_cfdi = np.interp(input_maoc, x_vals, y_vals)
ax.scatter(
input_maoc,
interpolated_y_cfdi,
c="r",
marker="*",
linewidths=2,
zorder=2,
s=32,
)
ax.vlines(
input_maoc,
0,
interpolated_y_cfdi,
color="tomato",
ls="--",
lw=1.5,
)
epsilon = 0.005
# Compute the average and plot it as a light grey vertical line
mean_val = np.mean(data)
# Interpolate the y value for the mean
interpolated_y_mean = np.interp(mean_val, x_vals, y_vals)
ax.vlines(mean_val, 0, interpolated_y_mean, color="grey", ls="--", lw=1.5)
ax.text(
mean_val + epsilon,
interpolated_y_mean + epsilon,
"Avg.",
{"color": "grey", "fontsize": 13},
ha="left", # Horizontal alignment
)
ax.text(
input_maoc + epsilon,
interpolated_y_cfdi + epsilon,
f"This {compute_type}",
{"color": "#DC143C", "fontsize": 13},
ha="left", # Horizontal alignment
)
ax.set_xlabel("Mean Age of Citation (mAoC)", fontsize=15)
ax.set_ylabel("Density", fontsize=15)
sns.despine(left=True, bottom=True, right=True, top=True)
return fig
|