Spaces:
Sleeping
Sleeping
File size: 16,255 Bytes
0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c 0fba077 7574c0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 |
# Copyright 2023 by Jan Philip Wahle, https://jpwahle.com/
# All rights reserved.
import asyncio
import datetime
import os
from collections import Counter
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import List, Tuple
import aiohttp
import requests
from aclanthology import (
async_match_acl_id_to_s2_paper,
extract_author_info,
extract_paper_info,
extract_venue_info,
)
from metrics import calculate_gini, calculate_gini_simpson
from pdf import parse_pdf_to_artcile_dict
def get_or_create_eventloop():
"""
Get the current event loop or create a new one if there is no current event loop in the thread.
Returns:
The current event loop.
"""
try:
return asyncio.get_event_loop()
except RuntimeError as ex:
if "There is no current event loop in thread" in str(ex):
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
return asyncio.get_event_loop()
def send_s2_request(request_url):
"""
Sends a GET request to the specified URL with the S2 API key in the headers.
Args:
request_url (str): The URL to send the request to.
Returns:
requests.Response: The response object returned by the request.
"""
return requests.get(
request_url,
headers={"x-api-key": os.environ["s2apikey"]},
timeout=10,
)
def check_s2_id_type(semantic_scholar_id):
"""
Check whether a given Semantic Scholar ID is valid for a paper or an author.
Args:
semantic_scholar_id (str): The Semantic Scholar ID to check.
Returns:
tuple: A tuple containing the type of the ID ("paper" or "author") and
the name of the author (if the ID is valid for an author), or "invalid"
if the ID is not valid for either a paper or an author.
"""
# First, check if it's a paper ID
paper_response = requests.get(
f"https://api.semanticscholar.org/v1/paper/{semantic_scholar_id}",
timeout=5,
)
# If the response status code is 200, it means the ID is valid for a paper
if paper_response.status_code == 200:
return "paper", None
# Next, check if it's an author ID
author_response = requests.get(
f"https://api.semanticscholar.org/v1/author/{semantic_scholar_id}",
timeout=5,
)
# If the response status code is 200, it means the ID is valid for an author
return (
"author",
author_response.json()["name"]
if author_response.status_code == 200
else "invalid",
)
def get_papers_from_author(ssid_author_id):
"""Retrieves all papers for a given author
Args:
ssid_author_id (str): semantic scholar id
Returns:
list: a list of all papers for the given author
"""
# Create request URL for an author
request_url = f"https://api.semanticscholar.org/graph/v1/author/{ssid_author_id}?fields=papers"
r = send_s2_request(request_url)
if r.status_code == 200:
papers = r.json().get("papers", [])
return [paper["paperId"] for paper in papers]
return []
def compute_stats_for_references(s2_ref_paper_keys, year):
"""
Computes various statistics for a list of reference paper keys.
Args:
s2_ref_paper_keys (list): A list of Semantic Scholar paper keys for the references.
year (int): The year of the paper.
Returns:
tuple: A tuple containing the following statistics:
- num_references (int): The number of references.
- fields_of_study_counts (dict): A dictionary containing the count of each field of study.
- year_to_title_dict (dict): A dictionary mapping the year of each reference to its title.
- cfdi (float): The CFDI (Cumulative Field Diversity Index) of the references.
- cadi (float): The CADI (Cumulative Age Diversity Index) of the references.
- output_maoc (float): The MAOC (Mean Age of Citation) of the references.
If there are no valid references, returns a tuple of None values.
"""
# Go over the references of the paper
reference_year_list = []
reference_title_list = []
reference_fos_list = []
with ThreadPoolExecutor() as executor:
request_url_refs = [
f"https://api.semanticscholar.org/graph/v1/paper/{ref_paper_key}?fields=title,year,s2FieldsOfStudy"
for ref_paper_key in s2_ref_paper_keys
]
futures = [
executor.submit(send_s2_request, request_url_ref)
for request_url_ref in request_url_refs
]
for future in as_completed(futures):
r_ref = future.result()
if r_ref.status_code == 200:
result_ref = r_ref.json()
(title_ref, year_ref, fields_ref) = (
result_ref["title"],
result_ref["year"],
result_ref["s2FieldsOfStudy"],
)
reference_year_list.append(year_ref)
reference_title_list.append(title_ref)
reference_fos_list.extend(
field["category"]
for field in fields_ref
if field["source"] == "s2-fos-model"
)
else:
print(
f"Error retrieving reference {r_ref.status_code} for"
f" paper {s2_ref_paper_keys}"
)
# Remove all None from reference_year_list and reference_title_list
reference_year_list = [
year_ref for year_ref in reference_year_list if year_ref is not None
]
reference_title_list = [
title_ref
for title_ref in reference_title_list
if title_ref is not None
]
# Count references
num_references = len(reference_year_list)
# Flatten list and count occurrences
fields_of_study_counts = dict(
Counter(
[
field
for field in reference_fos_list
if "Computer Science" not in field
]
)
)
# Citation age list
aoc_list = [
year - year_ref
for year_ref in reference_year_list
if year_ref and year
]
if not aoc_list:
return None, None, None, None, None, None
# Compute citation age
output_maoc = sum(aoc_list) / len(aoc_list)
cadi = calculate_gini(aoc_list)
# Create a dictionary of year to title
year_to_title_dict = dict(zip(reference_year_list, reference_title_list))
# Compute CFDI
cfdi = calculate_gini_simpson(fields_of_study_counts)
# Return the results
return (
num_references,
fields_of_study_counts,
year_to_title_dict,
cfdi,
cadi,
output_maoc,
)
def compute_stats_for_s2_paper(ssid_paper_id):
"""
Computes statistics for a given paper ID using the Semantic Scholar API.
Args:
ssid_paper_id (str): The Semantic Scholar ID of the paper to compute statistics for.
Returns:
Tuple containing the following statistics:
- title_authors (str): The title and authors of the paper.
- num_references (int): The number of references in the paper.
- fields_of_study_counts (dict): A dictionary containing the count of each field of study in the paper's references.
- year_to_title_dict (dict): A dictionary mapping the year of each reference to its title.
- cfdi (float): The CFDI (Cumulative Field Diversity Index) of the paper's references.
- cadi (float): The CADI (Citation Age Diversity Index) of the paper's references.
- output_maoc (float): The MAOC (Mean Age of Citation) of the paper's references.
"""
# Get the paper and its references
request_url = f"https://api.semanticscholar.org/graph/v1/paper/{ssid_paper_id}?fields=references,title,year,authors"
r = send_s2_request(request_url)
if r.status_code == 200: # if successful request
result = r.json()
if not result.get("references") or result.get("references") == []:
return None, None, None, None, None, None, None, None
s2_ref_paper_keys = [
reference_paper_tuple["paperId"]
for reference_paper_tuple in r.json()["references"]
]
filtered_s2_ref_paper_keys = [
s2_ref_paper_key
for s2_ref_paper_key in s2_ref_paper_keys
if s2_ref_paper_key is not None
]
title, year, authors = (
result["title"],
result["year"],
result["authors"],
)
title_authors = (
title + "\n" + ", ".join([author["name"] for author in authors])
)
(
num_references,
fields_of_study_counts,
year_to_title_dict,
cfdi,
cadi,
output_maoc,
) = compute_stats_for_references(filtered_s2_ref_paper_keys, year)
# Return the results
return (
title_authors,
num_references,
fields_of_study_counts,
year_to_title_dict,
cfdi,
cadi,
output_maoc,
)
def compute_stats_for_s2_author(ssid_author_id, author_name):
"""
Computes statistics for an author based on their papers in the Semantic Scholar database.
Args:
ssid_author_id (str): The Semantic Scholar author ID.
author_name (str): The name of the author.
Returns:
dict: A dictionary containing statistics for the author, or None if no papers were found.
"""
if papers := get_papers_from_author(ssid_author_id):
return compute_stats_for_multiple_s2_papers(papers, author_name)
return None
def compute_stats_for_acl_paper(url):
"""
Computes statistics for a paper based on its ACL Anthology URL.
Args:
url (str): The URL of the paper on the ACL Anthology website.
Returns:
dict: A dictionary containing statistics for the paper, or None if the paper was not found.
"""
if paper_info := extract_paper_info(url):
loop = get_or_create_eventloop()
# Match paper ID to Semantic Scholar ID
s2_paper = loop.run_until_complete(
async_match_acl_id_to_s2_paper(paper_info["acl_id"])
)
return compute_stats_for_s2_paper(s2_paper["paperId"])
return None
def compute_stats_for_acl_author(url):
"""
Computes statistics for an author's papers in the ACL anthology.
Args:
url (str): The URL of the author's page on the ACL anthology website.
Returns:
dict: A dictionary containing statistics for the author's papers, including
the number of papers, the number of citations, and the h-index.
Returns None if the author's page cannot be accessed or no papers are found.
"""
if paper_info := extract_author_info(url):
loop = get_or_create_eventloop()
tasks = [
async_match_acl_id_to_s2_paper(paper["url"].split("/")[-2])
for paper in paper_info["papers"]
]
papers = loop.run_until_complete(asyncio.gather(*tasks))
return compute_stats_for_multiple_s2_papers(
[paper["paperId"] for paper in papers if "paperId" in paper],
paper_info["author"],
)
return None
def compute_stats_for_acl_venue(url):
"""
Computes statistics for papers in a given ACL venue.
Args:
url (str): The URL of the ACL venue.
Returns:
dict: A dictionary containing statistics for the papers in the venue.
"""
if paper_info := extract_venue_info(url):
loop = get_or_create_eventloop()
tasks = [
async_match_acl_id_to_s2_paper(paper["url"].split("/")[-2])
for paper in paper_info["papers"]
]
papers = loop.run_until_complete(asyncio.gather(*tasks))
return compute_stats_for_multiple_s2_papers(
[paper["paperId"] for paper in papers if "paperId" in paper],
paper_info["venue"],
)
return None
def compute_stats_for_multiple_s2_papers(
papers: List[dict], title: str
) -> Tuple[str, int, dict, dict, float, float, float]:
"""
Computes statistics for multiple S2 papers.
Args:
papers (List[dict]): A list of S2 papers.
title (str): The title of the papers.
Returns:
A tuple containing the following statistics:
- title (str): The title of the papers.
- num_references (int): The total number of references in all papers.
- top_fields (dict): A dictionary containing the top fields and their counts.
- oldest_paper_dict (dict): A dictionary containing the oldest paper for each year.
- cfdi (float): The average CFDI score for all papers.
- cadi (float): The average CADI score for all papers.
- output_maoc (float): The average output MAOC score for all papers.
"""
num_references = 0
top_fields = {}
oldest_paper_dict = {}
cfdi = 0
cadi = 0
output_maoc = 0
def process_paper(paper):
return compute_stats_for_s2_paper(paper)
with ThreadPoolExecutor() as executor:
results_list = list(executor.map(process_paper, papers))
for results in results_list:
if not results or results[0] is None:
continue
num_references += results[1]
for field, count in results[2].items():
top_fields[field] = top_fields.get(field, 0) + count
for year, ref_title in results[3].items():
oldest_paper_dict[year] = ref_title
cfdi += results[4]
cadi += results[5]
output_maoc += results[6]
return (
title,
num_references,
top_fields,
oldest_paper_dict,
cfdi / len(papers),
cadi / len(papers),
output_maoc / len(papers),
)
async def send_s2_async_request(url):
"""
Sends an asynchronous request to the specified URL and returns the response as a JSON object.
Args:
url (str): The URL to send the request to.
Returns:
dict: The response from the URL as a JSON object.
"""
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
return await response.json()
async def match_title_to_s2_paper(title, authors=None):
"""
Matches a given paper title (and authors) to Semantic Scholar to retrieve its S2 paper ID.
Args:
title (str): The title of the paper.
authors (List[str], optional): List of authors of the paper. Defaults to None.
Returns:
str or None: Returns the S2 paper ID if found, otherwise None.
"""
# Send a request to the Semantic Scholar API to search for the paper by its title
search_url = (
f"http://api.semanticscholar.org/graph/v1/paper/search?query={title}"
)
# Send request
response = await send_s2_async_request(search_url)
results = response.get("data", [])
if len(results) > 0:
result = results[0] # Ranked by relevance
return result.get("paperId")
async def compute_stats_for_pdf(pdf_file):
"""
Computes statistics for a given PDF file.
Args:
pdf_file (file): The PDF file to compute statistics for.
Returns:
tuple: A tuple containing the title of the article and the computed statistics.
"""
s2_paper_ids = []
article_dict = parse_pdf_to_artcile_dict(pdf_file.name)
references = article_dict["references"]
# Get S2 paper IDs asynchronously
tasks = [
match_title_to_s2_paper(reference["title"], reference["authors"])
for reference in references
if reference["title"]
]
s2_paper_ids = await asyncio.gather(*tasks)
# Remove all None values from s2paperids
s2_paper_ids = [s2_id for s2_id in s2_paper_ids if s2_id is not None]
# Compute the current year
today = datetime.date.today()
year = int(today.strftime("%Y"))
results = compute_stats_for_references(s2_paper_ids, year)
results = (article_dict["title"],) + results
return results
|