File size: 48,884 Bytes
1f2d1fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import OrderedDict
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import FromOriginalModelMixin
from diffusers.models.attention_processor import (
    ADDED_KV_ATTENTION_PROCESSORS,
    CROSS_ATTENTION_PROCESSORS,
    AttentionProcessor,
    AttnAddedKVProcessor,
    AttnProcessor,
)
from diffusers.models.embeddings import (
    TextImageProjection,
    TextImageTimeEmbedding,
    TextTimeEmbedding,
    TimestepEmbedding,
    Timesteps,
)
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.unets.unet_2d_blocks import (
    CrossAttnDownBlock2D,
    DownBlock2D,
    UNetMidBlock2DCrossAttn,
    get_down_block,
)
from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
from diffusers.utils import BaseOutput, logging
from torch import nn
from torch.nn import functional as F

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# Transformer Block
# Used to exchange info between different conditions and input image
# With reference to https://github.com/TencentARC/T2I-Adapter/blob/SD/ldm/modules/encoders/adapter.py#L147
class QuickGELU(nn.Module):
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)


class LayerNorm(nn.LayerNorm):
    """Subclass torch's LayerNorm to handle fp16."""

    def forward(self, x: torch.Tensor):
        orig_type = x.dtype
        ret = super().forward(x)
        return ret.type(orig_type)


class ResidualAttentionBlock(nn.Module):
    def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
        super().__init__()

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = LayerNorm(d_model)
        self.mlp = nn.Sequential(
            OrderedDict(
                [
                    ("c_fc", nn.Linear(d_model, d_model * 4)),
                    ("gelu", QuickGELU()),
                    ("c_proj", nn.Linear(d_model * 4, d_model)),
                ]
            )
        )
        self.ln_2 = LayerNorm(d_model)
        self.attn_mask = attn_mask

    def attention(self, x: torch.Tensor):
        self.attn_mask = (
            self.attn_mask.to(dtype=x.dtype, device=x.device)
            if self.attn_mask is not None
            else None
        )
        return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]

    def forward(self, x: torch.Tensor):
        x = x + self.attention(self.ln_1(x))
        x = x + self.mlp(self.ln_2(x))
        return x


# -----------------------------------------------------------------------------------------------------


@dataclass
class ControlNetOutput(BaseOutput):
    """
    The output of [`ControlNetModel`].

    Args:
        down_block_res_samples (`tuple[torch.Tensor]`):
            A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
            be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
            used to condition the original UNet's downsampling activations.
        mid_down_block_re_sample (`torch.Tensor`):
            The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
            `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
            Output can be used to condition the original UNet's middle block activation.
    """

    down_block_res_samples: Tuple[torch.Tensor]
    mid_block_res_sample: torch.Tensor


class ControlNetConditioningEmbedding(nn.Module):
    """
    Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
    [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
    training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
    convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
    (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
    model) to encode image-space conditions ... into feature maps ..."
    """

    # original setting is (16, 32, 96, 256)
    def __init__(
        self,
        conditioning_embedding_channels: int,
        conditioning_channels: int = 3,
        block_out_channels: Tuple[int] = (48, 96, 192, 384),
    ):
        super().__init__()

        self.conv_in = nn.Conv2d(
            conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
        )

        self.blocks = nn.ModuleList([])

        for i in range(len(block_out_channels) - 1):
            channel_in = block_out_channels[i]
            channel_out = block_out_channels[i + 1]
            self.blocks.append(
                nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1)
            )
            self.blocks.append(
                nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2)
            )

        self.conv_out = zero_module(
            nn.Conv2d(
                block_out_channels[-1],
                conditioning_embedding_channels,
                kernel_size=3,
                padding=1,
            )
        )

    def forward(self, conditioning):
        embedding = self.conv_in(conditioning)
        embedding = F.silu(embedding)

        for block in self.blocks:
            embedding = block(embedding)
            embedding = F.silu(embedding)

        embedding = self.conv_out(embedding)

        return embedding


class ControlNetModel_Union(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    """
    A ControlNet model.

    Args:
        in_channels (`int`, defaults to 4):
            The number of channels in the input sample.
        flip_sin_to_cos (`bool`, defaults to `True`):
            Whether to flip the sin to cos in the time embedding.
        freq_shift (`int`, defaults to 0):
            The frequency shift to apply to the time embedding.
        down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
            The tuple of downsample blocks to use.
        only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
        block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
            The tuple of output channels for each block.
        layers_per_block (`int`, defaults to 2):
            The number of layers per block.
        downsample_padding (`int`, defaults to 1):
            The padding to use for the downsampling convolution.
        mid_block_scale_factor (`float`, defaults to 1):
            The scale factor to use for the mid block.
        act_fn (`str`, defaults to "silu"):
            The activation function to use.
        norm_num_groups (`int`, *optional*, defaults to 32):
            The number of groups to use for the normalization. If None, normalization and activation layers is skipped
            in post-processing.
        norm_eps (`float`, defaults to 1e-5):
            The epsilon to use for the normalization.
        cross_attention_dim (`int`, defaults to 1280):
            The dimension of the cross attention features.
        transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
            The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
            [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
            [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
        encoder_hid_dim (`int`, *optional*, defaults to None):
            If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
            dimension to `cross_attention_dim`.
        encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
            If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
            embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
        attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
            The dimension of the attention heads.
        use_linear_projection (`bool`, defaults to `False`):
        class_embed_type (`str`, *optional*, defaults to `None`):
            The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
            `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
        addition_embed_type (`str`, *optional*, defaults to `None`):
            Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
            "text". "text" will use the `TextTimeEmbedding` layer.
        num_class_embeds (`int`, *optional*, defaults to 0):
            Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
            class conditioning with `class_embed_type` equal to `None`.
        upcast_attention (`bool`, defaults to `False`):
        resnet_time_scale_shift (`str`, defaults to `"default"`):
            Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
        projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
            The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
            `class_embed_type="projection"`.
        controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
            The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
        conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
            The tuple of output channel for each block in the `conditioning_embedding` layer.
        global_pool_conditions (`bool`, defaults to `False`):
    """

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        in_channels: int = 4,
        conditioning_channels: int = 3,
        flip_sin_to_cos: bool = True,
        freq_shift: int = 0,
        down_block_types: Tuple[str] = (
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
            "DownBlock2D",
        ),
        only_cross_attention: Union[bool, Tuple[bool]] = False,
        block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
        layers_per_block: int = 2,
        downsample_padding: int = 1,
        mid_block_scale_factor: float = 1,
        act_fn: str = "silu",
        norm_num_groups: Optional[int] = 32,
        norm_eps: float = 1e-5,
        cross_attention_dim: int = 1280,
        transformer_layers_per_block: Union[int, Tuple[int]] = 1,
        encoder_hid_dim: Optional[int] = None,
        encoder_hid_dim_type: Optional[str] = None,
        attention_head_dim: Union[int, Tuple[int]] = 8,
        num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
        use_linear_projection: bool = False,
        class_embed_type: Optional[str] = None,
        addition_embed_type: Optional[str] = None,
        addition_time_embed_dim: Optional[int] = None,
        num_class_embeds: Optional[int] = None,
        upcast_attention: bool = False,
        resnet_time_scale_shift: str = "default",
        projection_class_embeddings_input_dim: Optional[int] = None,
        controlnet_conditioning_channel_order: str = "rgb",
        conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
        global_pool_conditions: bool = False,
        addition_embed_type_num_heads=64,
        num_control_type=6,
    ):
        super().__init__()

        # If `num_attention_heads` is not defined (which is the case for most models)
        # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
        # The reason for this behavior is to correct for incorrectly named variables that were introduced
        # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
        # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
        # which is why we correct for the naming here.
        num_attention_heads = num_attention_heads or attention_head_dim

        # Check inputs
        if len(block_out_channels) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(only_cross_attention, bool) and len(
            only_cross_attention
        ) != len(down_block_types):
            raise ValueError(
                f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
            )

        if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
            down_block_types
        ):
            raise ValueError(
                f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
            )

        if isinstance(transformer_layers_per_block, int):
            transformer_layers_per_block = [transformer_layers_per_block] * len(
                down_block_types
            )

        # input
        conv_in_kernel = 3
        conv_in_padding = (conv_in_kernel - 1) // 2
        self.conv_in = nn.Conv2d(
            in_channels,
            block_out_channels[0],
            kernel_size=conv_in_kernel,
            padding=conv_in_padding,
        )

        # time
        time_embed_dim = block_out_channels[0] * 4
        self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
        timestep_input_dim = block_out_channels[0]
        self.time_embedding = TimestepEmbedding(
            timestep_input_dim,
            time_embed_dim,
            act_fn=act_fn,
        )

        if encoder_hid_dim_type is None and encoder_hid_dim is not None:
            encoder_hid_dim_type = "text_proj"
            self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
            logger.info(
                "encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
            )

        if encoder_hid_dim is None and encoder_hid_dim_type is not None:
            raise ValueError(
                f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
            )

        if encoder_hid_dim_type == "text_proj":
            self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
        elif encoder_hid_dim_type == "text_image_proj":
            # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
            self.encoder_hid_proj = TextImageProjection(
                text_embed_dim=encoder_hid_dim,
                image_embed_dim=cross_attention_dim,
                cross_attention_dim=cross_attention_dim,
            )

        elif encoder_hid_dim_type is not None:
            raise ValueError(
                f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
            )
        else:
            self.encoder_hid_proj = None

        # class embedding
        if class_embed_type is None and num_class_embeds is not None:
            self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
        elif class_embed_type == "timestep":
            self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
        elif class_embed_type == "identity":
            self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
        elif class_embed_type == "projection":
            if projection_class_embeddings_input_dim is None:
                raise ValueError(
                    "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
                )
            # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
            # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
            # 2. it projects from an arbitrary input dimension.
            #
            # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
            # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
            # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
            self.class_embedding = TimestepEmbedding(
                projection_class_embeddings_input_dim, time_embed_dim
            )
        else:
            self.class_embedding = None

        if addition_embed_type == "text":
            if encoder_hid_dim is not None:
                text_time_embedding_from_dim = encoder_hid_dim
            else:
                text_time_embedding_from_dim = cross_attention_dim

            self.add_embedding = TextTimeEmbedding(
                text_time_embedding_from_dim,
                time_embed_dim,
                num_heads=addition_embed_type_num_heads,
            )
        elif addition_embed_type == "text_image":
            # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
            # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
            # case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
            self.add_embedding = TextImageTimeEmbedding(
                text_embed_dim=cross_attention_dim,
                image_embed_dim=cross_attention_dim,
                time_embed_dim=time_embed_dim,
            )
        elif addition_embed_type == "text_time":
            self.add_time_proj = Timesteps(
                addition_time_embed_dim, flip_sin_to_cos, freq_shift
            )
            self.add_embedding = TimestepEmbedding(
                projection_class_embeddings_input_dim, time_embed_dim
            )

        elif addition_embed_type is not None:
            raise ValueError(
                f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
            )

        # control net conditioning embedding
        self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
            conditioning_embedding_channels=block_out_channels[0],
            block_out_channels=conditioning_embedding_out_channels,
            conditioning_channels=conditioning_channels,
        )

        # Copyright by Qi Xin(2024/07/06)
        # Condition Transformer(fuse single/multi conditions with input image)
        # The Condition Transformer augment the feature representation of conditions
        # The overall design is somewhat like resnet. The output of Condition Transformer is used to predict a condition bias adding to the original condition feature.
        # num_control_type = 6
        num_trans_channel = 320
        num_trans_head = 8
        num_trans_layer = 1
        num_proj_channel = 320
        task_scale_factor = num_trans_channel**0.5

        self.task_embedding = nn.Parameter(
            task_scale_factor * torch.randn(num_control_type, num_trans_channel)
        )
        self.transformer_layes = nn.Sequential(
            *[
                ResidualAttentionBlock(num_trans_channel, num_trans_head)
                for _ in range(num_trans_layer)
            ]
        )
        self.spatial_ch_projs = zero_module(
            nn.Linear(num_trans_channel, num_proj_channel)
        )
        # -----------------------------------------------------------------------------------------------------

        # Copyright by Qi Xin(2024/07/06)
        # Control Encoder to distinguish different control conditions
        # A simple but effective module, consists of an embedding layer and a linear layer, to inject the control info to time embedding.
        self.control_type_proj = Timesteps(
            addition_time_embed_dim, flip_sin_to_cos, freq_shift
        )
        self.control_add_embedding = TimestepEmbedding(
            addition_time_embed_dim * num_control_type, time_embed_dim
        )
        # -----------------------------------------------------------------------------------------------------

        self.down_blocks = nn.ModuleList([])
        self.controlnet_down_blocks = nn.ModuleList([])

        if isinstance(only_cross_attention, bool):
            only_cross_attention = [only_cross_attention] * len(down_block_types)

        if isinstance(attention_head_dim, int):
            attention_head_dim = (attention_head_dim,) * len(down_block_types)

        if isinstance(num_attention_heads, int):
            num_attention_heads = (num_attention_heads,) * len(down_block_types)

        # down
        output_channel = block_out_channels[0]

        controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_down_blocks.append(controlnet_block)

        for i, down_block_type in enumerate(down_block_types):
            input_channel = output_channel
            output_channel = block_out_channels[i]
            is_final_block = i == len(block_out_channels) - 1

            down_block = get_down_block(
                down_block_type,
                num_layers=layers_per_block,
                transformer_layers_per_block=transformer_layers_per_block[i],
                in_channels=input_channel,
                out_channels=output_channel,
                temb_channels=time_embed_dim,
                add_downsample=not is_final_block,
                resnet_eps=norm_eps,
                resnet_act_fn=act_fn,
                resnet_groups=norm_num_groups,
                cross_attention_dim=cross_attention_dim,
                num_attention_heads=num_attention_heads[i],
                attention_head_dim=attention_head_dim[i]
                if attention_head_dim[i] is not None
                else output_channel,
                downsample_padding=downsample_padding,
                use_linear_projection=use_linear_projection,
                only_cross_attention=only_cross_attention[i],
                upcast_attention=upcast_attention,
                resnet_time_scale_shift=resnet_time_scale_shift,
            )
            self.down_blocks.append(down_block)

            for _ in range(layers_per_block):
                controlnet_block = nn.Conv2d(
                    output_channel, output_channel, kernel_size=1
                )
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

            if not is_final_block:
                controlnet_block = nn.Conv2d(
                    output_channel, output_channel, kernel_size=1
                )
                controlnet_block = zero_module(controlnet_block)
                self.controlnet_down_blocks.append(controlnet_block)

        # mid
        mid_block_channel = block_out_channels[-1]

        controlnet_block = nn.Conv2d(
            mid_block_channel, mid_block_channel, kernel_size=1
        )
        controlnet_block = zero_module(controlnet_block)
        self.controlnet_mid_block = controlnet_block

        self.mid_block = UNetMidBlock2DCrossAttn(
            transformer_layers_per_block=transformer_layers_per_block[-1],
            in_channels=mid_block_channel,
            temb_channels=time_embed_dim,
            resnet_eps=norm_eps,
            resnet_act_fn=act_fn,
            output_scale_factor=mid_block_scale_factor,
            resnet_time_scale_shift=resnet_time_scale_shift,
            cross_attention_dim=cross_attention_dim,
            num_attention_heads=num_attention_heads[-1],
            resnet_groups=norm_num_groups,
            use_linear_projection=use_linear_projection,
            upcast_attention=upcast_attention,
        )

    @classmethod
    def from_unet(
        cls,
        unet: UNet2DConditionModel,
        controlnet_conditioning_channel_order: str = "rgb",
        conditioning_embedding_out_channels: Optional[Tuple[int]] = (16, 32, 96, 256),
        load_weights_from_unet: bool = True,
    ):
        r"""
        Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].

        Parameters:
            unet (`UNet2DConditionModel`):
                The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
                where applicable.
        """
        transformer_layers_per_block = (
            unet.config.transformer_layers_per_block
            if "transformer_layers_per_block" in unet.config
            else 1
        )
        encoder_hid_dim = (
            unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
        )
        encoder_hid_dim_type = (
            unet.config.encoder_hid_dim_type
            if "encoder_hid_dim_type" in unet.config
            else None
        )
        addition_embed_type = (
            unet.config.addition_embed_type
            if "addition_embed_type" in unet.config
            else None
        )
        addition_time_embed_dim = (
            unet.config.addition_time_embed_dim
            if "addition_time_embed_dim" in unet.config
            else None
        )

        controlnet = cls(
            encoder_hid_dim=encoder_hid_dim,
            encoder_hid_dim_type=encoder_hid_dim_type,
            addition_embed_type=addition_embed_type,
            addition_time_embed_dim=addition_time_embed_dim,
            transformer_layers_per_block=transformer_layers_per_block,
            # transformer_layers_per_block=[1, 2, 5],
            in_channels=unet.config.in_channels,
            flip_sin_to_cos=unet.config.flip_sin_to_cos,
            freq_shift=unet.config.freq_shift,
            down_block_types=unet.config.down_block_types,
            only_cross_attention=unet.config.only_cross_attention,
            block_out_channels=unet.config.block_out_channels,
            layers_per_block=unet.config.layers_per_block,
            downsample_padding=unet.config.downsample_padding,
            mid_block_scale_factor=unet.config.mid_block_scale_factor,
            act_fn=unet.config.act_fn,
            norm_num_groups=unet.config.norm_num_groups,
            norm_eps=unet.config.norm_eps,
            cross_attention_dim=unet.config.cross_attention_dim,
            attention_head_dim=unet.config.attention_head_dim,
            num_attention_heads=unet.config.num_attention_heads,
            use_linear_projection=unet.config.use_linear_projection,
            class_embed_type=unet.config.class_embed_type,
            num_class_embeds=unet.config.num_class_embeds,
            upcast_attention=unet.config.upcast_attention,
            resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
            projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
            controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
            conditioning_embedding_out_channels=conditioning_embedding_out_channels,
        )

        if load_weights_from_unet:
            controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
            controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
            controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())

            if controlnet.class_embedding:
                controlnet.class_embedding.load_state_dict(
                    unet.class_embedding.state_dict()
                )

            controlnet.down_blocks.load_state_dict(
                unet.down_blocks.state_dict(), strict=False
            )
            controlnet.mid_block.load_state_dict(
                unet.mid_block.state_dict(), strict=False
            )

        return controlnet

    @property
    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
    def attn_processors(self) -> Dict[str, AttentionProcessor]:
        r"""
        Returns:
            `dict` of attention processors: A dictionary containing all attention processors used in the model with
            indexed by its weight name.
        """
        # set recursively
        processors = {}

        def fn_recursive_add_processors(
            name: str,
            module: torch.nn.Module,
            processors: Dict[str, AttentionProcessor],
        ):
            if hasattr(module, "get_processor"):
                processors[f"{name}.processor"] = module.get_processor(
                    return_deprecated_lora=True
                )

            for sub_name, child in module.named_children():
                fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)

            return processors

        for name, module in self.named_children():
            fn_recursive_add_processors(name, module, processors)

        return processors

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
    def set_attn_processor(
        self,
        processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
        _remove_lora=False,
    ):
        r"""
        Sets the attention processor to use to compute attention.

        Parameters:
            processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
                The instantiated processor class or a dictionary of processor classes that will be set as the processor
                for **all** `Attention` layers.

                If `processor` is a dict, the key needs to define the path to the corresponding cross attention
                processor. This is strongly recommended when setting trainable attention processors.

        """
        count = len(self.attn_processors.keys())

        if isinstance(processor, dict) and len(processor) != count:
            raise ValueError(
                f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
                f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
            )

        def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
            if hasattr(module, "set_processor"):
                if not isinstance(processor, dict):
                    module.set_processor(processor, _remove_lora=_remove_lora)
                else:
                    module.set_processor(
                        processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
                    )

            for sub_name, child in module.named_children():
                fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)

        for name, module in self.named_children():
            fn_recursive_attn_processor(name, module, processor)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
    def set_default_attn_processor(self):
        """
        Disables custom attention processors and sets the default attention implementation.
        """
        if all(
            proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
            for proc in self.attn_processors.values()
        ):
            processor = AttnAddedKVProcessor()
        elif all(
            proc.__class__ in CROSS_ATTENTION_PROCESSORS
            for proc in self.attn_processors.values()
        ):
            processor = AttnProcessor()
        else:
            raise ValueError(
                f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
            )

        self.set_attn_processor(processor, _remove_lora=True)

    # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attention_slice
    def set_attention_slice(self, slice_size):
        r"""
        Enable sliced attention computation.

        When this option is enabled, the attention module splits the input tensor in slices to compute attention in
        several steps. This is useful for saving some memory in exchange for a small decrease in speed.

        Args:
            slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
                When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
                `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        sliceable_head_dims = []

        def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
            if hasattr(module, "set_attention_slice"):
                sliceable_head_dims.append(module.sliceable_head_dim)

            for child in module.children():
                fn_recursive_retrieve_sliceable_dims(child)

        # retrieve number of attention layers
        for module in self.children():
            fn_recursive_retrieve_sliceable_dims(module)

        num_sliceable_layers = len(sliceable_head_dims)

        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = [dim // 2 for dim in sliceable_head_dims]
        elif slice_size == "max":
            # make smallest slice possible
            slice_size = num_sliceable_layers * [1]

        slice_size = (
            num_sliceable_layers * [slice_size]
            if not isinstance(slice_size, list)
            else slice_size
        )

        if len(slice_size) != len(sliceable_head_dims):
            raise ValueError(
                f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
                f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
            )

        for i in range(len(slice_size)):
            size = slice_size[i]
            dim = sliceable_head_dims[i]
            if size is not None and size > dim:
                raise ValueError(f"size {size} has to be smaller or equal to {dim}.")

        # Recursively walk through all the children.
        # Any children which exposes the set_attention_slice method
        # gets the message
        def fn_recursive_set_attention_slice(
            module: torch.nn.Module, slice_size: List[int]
        ):
            if hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size.pop())

            for child in module.children():
                fn_recursive_set_attention_slice(child, slice_size)

        reversed_slice_size = list(reversed(slice_size))
        for module in self.children():
            fn_recursive_set_attention_slice(module, reversed_slice_size)

    def _set_gradient_checkpointing(self, module, value=False):
        if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
            module.gradient_checkpointing = value

    def forward(
        self,
        sample: torch.FloatTensor,
        timestep: Union[torch.Tensor, float, int],
        encoder_hidden_states: torch.Tensor,
        controlnet_cond_list: torch.FloatTensor,
        conditioning_scale: float = 1.0,
        class_labels: Optional[torch.Tensor] = None,
        timestep_cond: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guess_mode: bool = False,
        return_dict: bool = True,
    ) -> Union[ControlNetOutput, Tuple]:
        """
        The [`ControlNetModel`] forward method.

        Args:
            sample (`torch.FloatTensor`):
                The noisy input tensor.
            timestep (`Union[torch.Tensor, float, int]`):
                The number of timesteps to denoise an input.
            encoder_hidden_states (`torch.Tensor`):
                The encoder hidden states.
            controlnet_cond (`torch.FloatTensor`):
                The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
            conditioning_scale (`float`, defaults to `1.0`):
                The scale factor for ControlNet outputs.
            class_labels (`torch.Tensor`, *optional*, defaults to `None`):
                Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
            timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
                Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
                timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
                embeddings.
            attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
                An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
                is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
                negative values to the attention scores corresponding to "discard" tokens.
            added_cond_kwargs (`dict`):
                Additional conditions for the Stable Diffusion XL UNet.
            cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
                A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
            guess_mode (`bool`, defaults to `False`):
                In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
                you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
            return_dict (`bool`, defaults to `True`):
                Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.

        Returns:
            [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
                If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
                returned where the first element is the sample tensor.
        """
        # check channel order
        channel_order = self.config.controlnet_conditioning_channel_order

        if channel_order == "rgb":
            # in rgb order by default
            ...
        # elif channel_order == "bgr":
        #     controlnet_cond = torch.flip(controlnet_cond, dims=[1])
        else:
            raise ValueError(
                f"unknown `controlnet_conditioning_channel_order`: {channel_order}"
            )

        # prepare attention_mask
        if attention_mask is not None:
            attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # 1. time
        timesteps = timestep
        if not torch.is_tensor(timesteps):
            # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
            # This would be a good case for the `match` statement (Python 3.10+)
            is_mps = sample.device.type == "mps"
            if isinstance(timestep, float):
                dtype = torch.float32 if is_mps else torch.float64
            else:
                dtype = torch.int32 if is_mps else torch.int64
            timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
        elif len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(sample.device)

        # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
        timesteps = timesteps.expand(sample.shape[0])

        t_emb = self.time_proj(timesteps)

        # timesteps does not contain any weights and will always return f32 tensors
        # but time_embedding might actually be running in fp16. so we need to cast here.
        # there might be better ways to encapsulate this.
        t_emb = t_emb.to(dtype=sample.dtype)

        emb = self.time_embedding(t_emb, timestep_cond)
        aug_emb = None

        if self.class_embedding is not None:
            if class_labels is None:
                raise ValueError(
                    "class_labels should be provided when num_class_embeds > 0"
                )

            if self.config.class_embed_type == "timestep":
                class_labels = self.time_proj(class_labels)

            class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
            emb = emb + class_emb

        if self.config.addition_embed_type is not None:
            if self.config.addition_embed_type == "text":
                aug_emb = self.add_embedding(encoder_hidden_states)

            elif self.config.addition_embed_type == "text_time":
                if "text_embeds" not in added_cond_kwargs:
                    raise ValueError(
                        f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
                    )
                text_embeds = added_cond_kwargs.get("text_embeds")
                if "time_ids" not in added_cond_kwargs:
                    raise ValueError(
                        f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
                    )
                time_ids = added_cond_kwargs.get("time_ids")
                time_embeds = self.add_time_proj(time_ids.flatten())
                time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))

                add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
                add_embeds = add_embeds.to(emb.dtype)
                aug_emb = self.add_embedding(add_embeds)

        # Copyright by Qi Xin(2024/07/06)
        # inject control type info to time embedding to distinguish different control conditions
        control_type = added_cond_kwargs.get("control_type")
        control_embeds = self.control_type_proj(control_type.flatten())
        control_embeds = control_embeds.reshape((t_emb.shape[0], -1))
        control_embeds = control_embeds.to(emb.dtype)
        control_emb = self.control_add_embedding(control_embeds)
        emb = emb + control_emb
        # ---------------------------------------------------------------------------------

        emb = emb + aug_emb if aug_emb is not None else emb

        # 2. pre-process
        sample = self.conv_in(sample)
        indices = torch.nonzero(control_type[0])

        # Copyright by Qi Xin(2024/07/06)
        # add single/multi conditons to input image.
        # Condition Transformer provides an easy and effective way to fuse different features naturally
        inputs = []
        condition_list = []

        for idx in range(indices.shape[0] + 1):
            if idx == indices.shape[0]:
                controlnet_cond = sample
                feat_seq = torch.mean(controlnet_cond, dim=(2, 3))  # N * C
            else:
                controlnet_cond = self.controlnet_cond_embedding(
                    controlnet_cond_list[indices[idx][0]]
                )
                feat_seq = torch.mean(controlnet_cond, dim=(2, 3))  # N * C
                feat_seq = feat_seq + self.task_embedding[indices[idx][0]]

            inputs.append(feat_seq.unsqueeze(1))
            condition_list.append(controlnet_cond)

        x = torch.cat(inputs, dim=1)  # NxLxC
        x = self.transformer_layes(x)

        controlnet_cond_fuser = sample * 0.0
        for idx in range(indices.shape[0]):
            alpha = self.spatial_ch_projs(x[:, idx])
            alpha = alpha.unsqueeze(-1).unsqueeze(-1)
            controlnet_cond_fuser += condition_list[idx] + alpha

        sample = sample + controlnet_cond_fuser
        # -------------------------------------------------------------------------------------------

        # 3. down
        down_block_res_samples = (sample,)
        for downsample_block in self.down_blocks:
            if (
                hasattr(downsample_block, "has_cross_attention")
                and downsample_block.has_cross_attention
            ):
                sample, res_samples = downsample_block(
                    hidden_states=sample,
                    temb=emb,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=attention_mask,
                    cross_attention_kwargs=cross_attention_kwargs,
                )
            else:
                sample, res_samples = downsample_block(hidden_states=sample, temb=emb)

            down_block_res_samples += res_samples

        # 4. mid
        if self.mid_block is not None:
            sample = self.mid_block(
                sample,
                emb,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        # 5. Control net blocks

        controlnet_down_block_res_samples = ()

        for down_block_res_sample, controlnet_block in zip(
            down_block_res_samples, self.controlnet_down_blocks
        ):
            down_block_res_sample = controlnet_block(down_block_res_sample)
            controlnet_down_block_res_samples = controlnet_down_block_res_samples + (
                down_block_res_sample,
            )

        down_block_res_samples = controlnet_down_block_res_samples

        mid_block_res_sample = self.controlnet_mid_block(sample)

        # 6. scaling
        if guess_mode and not self.config.global_pool_conditions:
            scales = torch.logspace(
                -1, 0, len(down_block_res_samples) + 1, device=sample.device
            )  # 0.1 to 1.0
            scales = scales * conditioning_scale
            down_block_res_samples = [
                sample * scale for sample, scale in zip(down_block_res_samples, scales)
            ]
            mid_block_res_sample = mid_block_res_sample * scales[-1]  # last one
        else:
            down_block_res_samples = [
                sample * conditioning_scale for sample in down_block_res_samples
            ]
            mid_block_res_sample = mid_block_res_sample * conditioning_scale

        if self.config.global_pool_conditions:
            down_block_res_samples = [
                torch.mean(sample, dim=(2, 3), keepdim=True)
                for sample in down_block_res_samples
            ]
            mid_block_res_sample = torch.mean(
                mid_block_res_sample, dim=(2, 3), keepdim=True
            )

        if not return_dict:
            return (down_block_res_samples, mid_block_res_sample)

        return ControlNetOutput(
            down_block_res_samples=down_block_res_samples,
            mid_block_res_sample=mid_block_res_sample,
        )


def zero_module(module):
    for p in module.parameters():
        nn.init.zeros_(p)
    return module