Spaces:
Sleeping
Sleeping
File size: 9,597 Bytes
a23be62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import torch
from transformers import BertTokenizer, BertForTokenClassification, pipeline
import pickle # for saving and loading Python objects
from openai import OpenAI
import tiktoken
from transformers import AutoConfig, AutoTokenizer
import os
import torch.nn as nn
from transformers import AutoModel, AutoConfig
client = OpenAI(api_key="sk-proj-K2n4UpzlAKfw464kITLHT3BlbkFJfXtLIl4Ejhn1KHQOjnTq")
# Define BiLSTMForTokenClassification Class
class BiLSTMForTokenClassification(nn.Module):
"""
This model combines BERT embeddings with a Bidirectional LSTM (BiLSTM) for token-level classification
tasks like Named Entity Recognition (NER).
Args:
pretrained_model_name_or_path: Name of the pre-trained BERT model to use (e.g., "bert-base-cased").
num_labels: Number of different labels to predict.
hidden_size: Dimension of the hidden states in the BiLSTM (default: 128).
num_lstm_layers: Number of stacked BiLSTM layers (default: 1).
"""
def __init__(self, model_name, num_labels, hidden_size=128, num_lstm_layers=1):
super().__init__()
self.num_labels = num_labels
self.config = AutoConfig.from_pretrained(model_name)
self.bert = AutoModel.from_pretrained(model_name)
# Freeze BERT embeddings
for name, param in self.bert.named_parameters():
if name.startswith("embeddings"):
param.requires_grad = False
self.bilstm = nn.LSTM(self.bert.config.hidden_size, hidden_size, num_layers=num_lstm_layers, bidirectional=True, batch_first=True)
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(hidden_size * 2, num_labels)
def forward(self, input_ids, attention_mask=None, labels=None):
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
sequence_output = outputs[0]
lstm_output, _ = self.bilstm(sequence_output)
lstm_output = self.dropout(lstm_output)
logits = self.classifier(lstm_output)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
active_loss = attention_mask.view(-1) == 1
active_logits = logits.view(-1, self.num_labels)
active_labels = torch.where(active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels))
valid_mask = (active_labels >= 0) & (active_labels < self.num_labels)
active_logits = active_logits[valid_mask]
active_labels = active_labels[valid_mask]
loss = loss_fct(active_logits, active_labels)
return {'loss': loss, 'logits': logits}
# Load custom BiLSTM and pre-trained BERT
def load_models():
bert_model = BertForTokenClassification.from_pretrained("joyinning/chatbot-info-extraction/models/bert-model.pkl")
bert_model.eval()
with open('joyinning/chatbot-info-extraction/models/bilstm-model.pkl', 'rb') as f:
bilstm_model = pickle.load(f)
return bert_model, bilstm_model
def load_custom_model(model_dir, tokenizer_dir, id2label):
config = AutoConfig.from_pretrained(model_dir, local_files_only=True)
config.id2label = id2label
config.num_labels = len(id2label)
model = BiLSTMForTokenClassification(model_name=config._name_or_path, num_labels=config.num_labels)
model.config.id2label = id2label
model.load_state_dict(torch.load(os.path.join(model_dir, 'pytorch_model.bin'), map_location=torch.device('cpu')))
tokenizer = AutoTokenizer.from_pretrained(tokenizer_dir, local_files_only=True)
return model, tokenizer
ner_model_dir = "models/bilstm_ner"
tokenizer_dir = "models/tokenizer"
id2label_ner = {0: 'O', 1: 'I-art', 2: 'B-org', 3: 'B-geo', 4: 'I-per', 5: 'B-eve', 6: 'I-geo', 7: 'B-per', 8: 'I-nat', 9: 'B-art', 10: 'B-tim', 11: 'I-gpe', 12: 'I-tim', 13: 'B-nat', 14: 'B-gpe', 15: 'I-org', 16: 'I-eve'}
ner_model, ner_tokenizer = load_custom_model(ner_model_dir, tokenizer_dir, id2label_ner)
# QA model
qa_model = pipeline('question-answering', model='deepset/bert-base-cased-squad2')
# Function to extract information
def extract_information(text, bert_model, bilstm_model, ner_tokenizer, id2label_ner):
extracted_info = {}
ner_tags = predict_tags(text, bilstm_model, ner_tokenizer, id2label_ner)
extracted_info.update(extract_4w_qa(text, ner_tags))
qa_result = generate_why_or_how_question_and_answer(extracted_info, text)
if qa_result:
extracted_info.update(qa_result)
prompt = f"Question: {qa_result['question']}\nContext: {text}\nAnswer:"
extracted_info["Token Count"] = count_tokens(prompt)
return extracted_info
def predict_tags(sentence, model, tokenizer, label_map):
"""
Predicts NER tags for a given sentence using the specified model and tokenizer.
Args:
sentence: The input sentence as a string.
model: The pre-trained model (BiLSTM) for tag prediction.
tokenizer: The tokenizer used for converting the sentence into tokens.
label_map: A dictionary mapping numerical label indices to their corresponding tags.
Returns:
A list of predicted tags for each token in the sentence.
"""
tokens = tokenizer.tokenize(tokenizer.decode(tokenizer.encode(sentence)))
inputs = tokenizer.encode(sentence, return_tensors='pt')
outputs = model(inputs)
logits = outputs['logits']
predictions = torch.argmax(logits, dim=2)
labels = [label_map.get(prediction.item(), "O") for prediction in predictions[0][1:-1]]
return labels
def extract_4w_qa(sentence, ner_tags):
"""
Extracts 4w (Who, What, When, Where) information from a sentence
using NER tags and a question-answering model.
Args:
sentence: The input sentence as a string.
ner_tags: A list of predicted NER tags for each token in the sentence.
Returns:
A dictionary where keys are 5W1H question words and values are the corresponding
answers extracted from the sentence.
"""
result = {}
questions = {
"B-per": "Who",
"I-per": "Who",
"B-geo": "Where",
"I-geo": "Where",
"B-org": "What organization",
"I-org": "What organization",
"B-tim": "When",
"I-tim": "When",
"B-art": "What art",
"I-art": "What art",
"B-eve": "What event",
"I-eve": "What event",
"B-nat": "What natural phenomenon",
"I-nat": "What natural phenomenon",
}
for ner_tag, entity in zip(ner_tags, sentence.split()): # Removed pos_tags
if ner_tag in questions:
question = f"{questions[ner_tag]} is {entity}?" # Removed pos_tag
answer = qa_model(question=question, context=sentence)["answer"]
result[questions[ner_tag]] = answer
return result
def count_tokens(text):
"""
Counts the number of tokens in a text string using the tiktoken encoding for GPT-3.5 Turbo.
Args:
text: The input text string.
Returns:
The number of tokens in the text.
"""
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo-instruct")
return len(encoding.encode(text))
def generate_why_or_how_question_and_answer(extracted_info, sentence):
"""
Generates a "Why" or "How" question based on the extracted 4W information and gets the answer using GPT-3.5.
Args:
extracted_info: A dictionary containing the extracted 4W information.
sentence: The original sentence.
Returns:
A dictionary containing the generated question and its answer, or None if no relevant question can be generated.
"""
prompt_template = """
Given the following extracted information and the original sentence, generate a relevant "Why" or "How" question and provide a concise answer based on the given context.
Extracted Information: {extracted_info}
Sentence: {sentence}
Question and Answer:
"""
prompt = prompt_template.format(extracted_info=extracted_info, sentence=sentence)
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
max_tokens=150,
stop=None,
temperature=0.5,
)
question_and_answer = response.choices[0].message.content.strip()
if question_and_answer:
try:
question, answer = question_and_answer.split("\n", 1)
return {"question": question, "answer": answer}
except ValueError:
return None
else:
return None
def get_why_or_how_answer(question, context):
"""
Queries OpenAI's GPT-3.5 model to generate an answer for a given question based on the provided context.
Args:
question (str): The question to be answered.
context (str): The text context from which the answer should be extracted.
Returns:
str: The generated answer from GPT-3.5.
"""
prompt = f"Question: {question}\nContext: {context}\nAnswer:"
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
max_tokens=150,
stop=None,
temperature=0.5,
)
return response.choices[0].text.strip()
|