Spaces:
Sleeping
Sleeping
File size: 1,246 Bytes
a23be62 3909b49 a23be62 3909b49 a23be62 3909b49 a23be62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
# -*- coding: utf-8 -*-
"""app
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1Glbl7TT2ZahRqXHGYp9J3zH5U4ZB0Dsd
"""
import gradio as gr
from model_utils import load_models, extract_information, predict_tags, extract_4w_qa, generate_why_or_how_question_and_answer
bert_model, bilstm_model, ner_tokenizer, id2label_ner = load_models()
def extract_and_display_info(user_input):
if user_input:
ner_tags = predict_tags(user_input, bilstm_model, ner_tokenizer, id2label_ner)
extracted_info = extract_4w_qa(user_input, ner_tags)
qa_result = generate_why_or_how_question_and_answer(extracted_info, user_input)
if qa_result:
extracted_info["Generated Question"] = qa_result["question"]
extracted_info["Answer"] = qa_result["answer"]
output_text = "Extracted Information:\n"
for question, answer in extracted_info.items():
output_text += f"- **{question}:** {answer}\n"
return output_text
else:
return "Please enter some text."
iface = gr.Interface(
fn=extract_and_display_info,
inputs="text",
outputs="text",
title="Information Extraction Chatbot"
)
iface.launch() |