Spaces:
Sleeping
Sleeping
File size: 8,317 Bytes
6e35d3a db3d860 6e35d3a db3d860 e43bff4 6e35d3a db3d860 6e35d3a e43bff4 6e35d3a db3d860 6e35d3a e43bff4 db3d860 6e35d3a db3d860 6e35d3a e43bff4 6e35d3a db3d860 6e35d3a e43bff4 db3d860 098f228 db3d860 6e35d3a e43bff4 6e35d3a db3d860 6e35d3a db3d860 e43bff4 6e35d3a db3d860 6e35d3a 77acca3 db3d860 6e35d3a db3d860 098f228 6e35d3a db3d860 6e35d3a db3d860 6e35d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import gradio as gr
import joblib
import os
import pandas as pd
# Path to the model scores file
model_scores_file = "report/model_summary_report_6_smote.csv"
# Load model performance metrics from the provided CSV file
if os.path.exists(model_scores_file):
model_scores_df = pd.read_csv(model_scores_file)
required_columns = {'Model Name', 'Model Sensitivity', 'Model Specificity'}
if required_columns.issubset(model_scores_df.columns):
model_performance = model_scores_df.set_index('Model Name')[['Model Sensitivity', 'Model Specificity']].T.to_dict()
else:
raise ValueError(f"The file '{model_scores_file}' must contain the columns: {required_columns}")
else:
raise FileNotFoundError(f"The model scores file '{model_scores_file}' was not found. Please ensure it exists in the 'report/' directory.")
# Dictionary containing the model names and corresponding pickle file names
model_paths = {
'AdaBoost': 'pjas-thyroid-AdaBoost.pkl',
'Decision Tree': 'pjas-thyroid-Decision Tree.pkl',
'Gaussian Naive Bayes': 'pjas-thyroid-Gaussian Naive Bayes.pkl',
'Gradient Boosting': 'pjas-thyroid-Gradient Boosting.pkl',
'K-Nearest Neighbors': 'pjas-thyroid-K-Nearest Neighbors.pkl',
'Logistic Regression': 'pjas-thyroid-Logistic Regression.pkl',
'Random Forest': 'pjas-thyroid-Random Forest.pkl',
'Support Vector Machine': 'pjas-thyroid-Support Vector Machine.pkl',
'XGBoost': 'pjas-thyroid-XGBoost.pkl'
}
# Preload all models at startup
loaded_models = {}
for model_name, pickle_file in model_paths.items():
model_file_path = os.path.join("model", pickle_file)
if os.path.exists(model_file_path):
try:
loaded_models[model_name] = joblib.load(model_file_path)
except Exception as e:
print(f"Error loading {model_name}: {e}")
else:
print(f"Model file for {model_name} not found.")
def predict_cancer(age, gender, T, N, Focality, Response):
# Validate age
if age is None or not (1 <= age <= 100):
return "π΄ **Error:** Age must be a number between 1 and 100."
# Validate gender
if gender not in ["Female", "Male"]:
return "π΄ **Error:** Please select a valid gender."
# Validate T (Tumor Size)
if T is None:
return "π΄ **Error:** Please select a valid T (Tumor Size) option."
# Validate N (Lymph Node Spread)
if N is None:
return "π΄ **Error:** Please select a valid N (Lymph Node Spread) option."
# Validate Focality
if Focality is None:
return "π΄ **Error:** Please select a valid Focality option."
# Validate Response
if Response is None:
return "π΄ **Error:** Please select a valid Response option."
# Process gender and other fields
gender_val = 0 if gender == "Female" else 1
response_val = int(Response)
T_val = int(T)
N_val = int(N)
Focality_val = int(Focality)
# Prepare features
features = pd.DataFrame({
'Age': [age],
'Gender': [gender_val],
'T': [T_val],
'N': [N_val],
'Focality': [Focality_val],
'Response': [response_val]
})
# Validate scaler file
scaler_file = "model/pjas-thyroid-Scaler.pkl"
if not os.path.exists(scaler_file):
return "π΄ **Error:** Scaler file not found. Please contact the administrator."
scaler = joblib.load(scaler_file)
features[['Age']] = scaler.transform(features[['Age']])
# Sort models based on sensitivity
sorted_model_names = sorted(
model_performance.keys(),
key=lambda m: model_performance[m]['Model Sensitivity'],
reverse=True
)
# Generate HTML table
table_header = """
<table>
<thead>
<tr>
<th>Model</th>
<th style="color:#FBCEB1;">Recurrence Accuracy (%)</th>
<th style="color:green;">Non-Recurrence Accuracy (%)</th>
<th>Prediction</th>
</tr>
</thead>
<tbody>
"""
table_rows = []
can_recur_emoji = "π΄"
cannot_recur_emoji = "π’"
for model_name in sorted_model_names:
model = loaded_models.get(model_name)
if not model:
row = f"<tr><td>{model_name}</td><td>N/A</td><td>N/A</td><td>Error: Model not loaded</td></tr>"
table_rows.append(row)
continue
try:
prediction = model.predict(features)
pred_value = prediction[0]
pred_text = f"{can_recur_emoji} Can recur" if pred_value == 1 else f"{cannot_recur_emoji} Cannot-recur"
sensitivity = model_performance[model_name]['Model Sensitivity']
specificity = model_performance[model_name]['Model Specificity']
row = f"<tr><td>{model_name}</td><td>{sensitivity:.2f}%</td><td>{specificity:.2f}%</td><td>{pred_text}</td></tr>"
table_rows.append(row)
except Exception as e:
row = f"<tr><td>{model_name}</td><td>N/A</td><td>N/A</td><td>Error: {str(e)}</td></tr>"
table_rows.append(row)
table_footer = "</tbody></table>"
html_table = table_header + "".join(table_rows) + table_footer
success_message = "<br><br>β
<strong>Prediction completed successfully.</strong>"
return html_table + success_message
def clear_md():
return ""
# UI Layout
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
gr.Markdown("# Thyroid Cancer Recurrence Predictor")
with gr.Row():
age_slider = gr.Number(
label="Age",
value=44,
interactive=True,
elem_id="age-box",
step=1
)
gender_radio = gr.Radio(
choices=["Female", "Male"],
value="Female",
label="Gender",
interactive=True
)
with gr.Row():
T_dropdown = gr.Dropdown(
choices=[
("T1a (β€1 cm, confined to the thyroid)", "0"),
("T1b (>1 cm and β€2 cm, confined to the thyroid)", "1"),
("T2 (>2 cm and β€4 cm, confined to the thyroid)", "2"),
("T3a (>4 cm, confined to the thyroid)", "3"),
("T3b (Minimal extrathyroidal extension)", "4"),
("T4a (Moderate extrathyroidal extension, operable)", "5"),
("T4b (Extensive extrathyroidal extension, inoperable)", "6")
],
value="0",
label="T (Tumor Size)",
interactive=True
)
with gr.Row():
N_dropdown = gr.Dropdown(
choices=[
("N0 (No spread to nearby lymph nodes)", "0"),
("N1a (Spread to lymph nodes in the neck close to the thyroid)", "1"),
("N1b (Spread to lymph nodes in the neck farther from the thyroid or upper chest)", "2")
],
value="0",
label="N (Lymph Node Spread)",
interactive=True
)
with gr.Row():
focality_dropdown = gr.Dropdown(
choices=[
("Uni-focal (Single focus of thyroid cancer)", "1"),
("Multi-focal (Multiple foci of thyroid cancer)", "0")
],
value="1",
label="Focality",
interactive=True
)
with gr.Row():
response_dropdown = gr.Dropdown(
choices=[
("β
Excellent Response - Negative imaging studies and Tg < 0.2 ng/mL or stimulated Tg < 1 ng/mL", "0"),
("β Indeterminate Response - Nonspecific findings; Tg potentially low", "1"),
("β οΈ Biochemical Incomplete - Tg > 1 ng/mL or rising anti-Tg antibody levels", "2"),
("β Structural Incomplete - Identifiable structural disease on imaging", "3")
],
value="0",
label="Response",
interactive=True
)
predict_button = gr.Button(value="Predict", variant="primary")
prediction_output = gr.HTML(label="Prediction Results")
predict_button.click(fn=clear_md, outputs=prediction_output)
predict_button.click(
fn=predict_cancer,
inputs=[age_slider, gender_radio, T_dropdown, N_dropdown, focality_dropdown, response_dropdown],
outputs=prediction_output
)
demo.launch() |