Spaces:
Sleeping
Sleeping
File size: 1,443 Bytes
8bd526d a666c6e 8bd526d cba0192 8bd526d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
# This script creates a simple web application using Gradio to generate captions for images using the BLIP model from Hugging Face's Transformers library.
# Import necessary libraries
import gradio as gr
import numpy as np
from PIL import Image
from transformers import AutoProcessor, BlipForConditionalGeneration
# Load the pretrained processor and model
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Define the function to process the image and generate a caption
def caption_image(input_image: np.ndarray):
# Convert numpy array to PIL Image and convert to RGB
raw_image = Image.fromarray(input_image).convert('RGB')
# Process the image
text = "An image of"
inputs = processor(images=raw_image, text=text, return_tensors="pt")
# Generate a caption for the image
outputs = model.generate(**inputs, max_length=100)
# Decode the generated tokens to text and store it into `caption`
caption = processor.decode(outputs[0], skip_special_tokens=True)
return caption
# Create a Gradio interface
iface = gr.Interface(
fn=caption_image,
inputs=gr.Image(),
outputs="text",
title="Image Captioning",
description="This is a simple web app for generating captions for images using BLIP model from Salesforce."
)
# Launch the Gradio app
iface.launch() |