Spaces:
Runtime error
Runtime error
File size: 16,141 Bytes
549e090 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
import cv2
import numpy as np
# np.set_printoptions(threshold=np.inf)
import random
import torch
import torchvision.transforms as transforms
from pathlib import Path
from torch.utils.data import Dataset
from utils.utils import letterbox, augment_hsv, random_perspective
from tqdm.autonotebook import tqdm
import json
import albumentations as A
class BddDataset(Dataset):
def __init__(self, params, is_train, inputsize=640, transform=None):
"""
initial all the characteristic
Inputs:
-params: configuration parameters
-is_train(bool): whether train set or not
-transform: ToTensor and Normalize
Returns:
None
"""
self.single_cls = True # just detect vehicle
self.is_train = is_train
self.params = params
self.transform = transform
self.inputsize = inputsize
self.Tensor = transforms.ToTensor()
img_root = Path(params.dataset['dataroot'])
label_root = Path(params.dataset['labelroot'])
mask_root = Path(params.dataset['maskroot'])
lane_root = Path(params.dataset['laneroot'])
if is_train:
indicator = params.dataset['train_set']
else:
indicator = params.dataset['test_set']
self.img_root = img_root / indicator
self.label_root = label_root / indicator
self.mask_root = mask_root / indicator
self.lane_root = lane_root / indicator
# self.label_list = self.label_root.iterdir()
self.mask_list = self.mask_root.iterdir()
self.data_format = params.dataset['data_format']
self.scale_factor = params.dataset['scale_factor']
self.rotation_factor = params.dataset['rot_factor']
self.flip = params.dataset['flip']
self.color_rgb = params.dataset['color_rgb']
self.albumentations_transform = A.Compose([
A.Blur(p=0.01),
A.MedianBlur(p=0.01),
A.ToGray(p=0.01),
A.CLAHE(p=0.01),
A.RandomBrightnessContrast(p=0.01),
A.RandomGamma(p=0.01),
A.ImageCompression(quality_lower=75, p=0.01)],
bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']),
additional_targets={'mask0': 'mask'})
# bdd_labels = {
# 'unlabeled':0, 'dynamic': 1, 'ego vehicle': 2, 'ground': 3,
# 'static': 4, 'parking': 5, 'rail track': 6, 'road': 7,
# 'sidewalk': 8, 'bridge': 9, 'building': 10, 'fence': 11,
# 'garage': 12, 'guard rail': 13, 'tunnel': 14, 'wall': 15,
# 'banner': 16, 'billboard': 17, 'lane divider': 18,'parking sign': 19,
# 'pole': 20, 'polegroup': 21, 'street light': 22, 'traffic cone': 23,
# 'traffic device': 24, 'traffic light': 25, 'traffic sign': 26, 'traffic sign frame': 27,
# 'terrain': 28, 'vegetation': 29, 'sky': 30, 'person': 31,
# 'rider': 32, 'bicycle': 33, 'bus': 34, 'car': 35,
# 'caravan': 36, 'motorcycle': 37, 'trailer': 38, 'train': 39,
# 'truck': 40
# }
self.id_dict = {'person': 0, 'rider': 1, 'car': 2, 'bus': 3, 'truck': 4,
'bike': 5, 'motor': 6, 'tl_green': 7, 'tl_red': 8,
'tl_yellow': 9, 'tl_none': 10, 'traffic sign': 11, 'train': 12}
self.id_dict_single = {'car': 0, 'bus': 1, 'truck': 2, 'train': 3}
# id_dict = {'car': 0, 'bus': 1, 'truck': 2}
self.shapes = np.array(params.dataset['org_img_size'])
self.db = self._get_db()
def _get_db(self):
"""
get database from the annotation file
Inputs:
Returns:
gt_db: (list)database [a,b,c,...]
a: (dictionary){'image':, 'information':, ......}
image: image path
mask: path of the segmetation label
label: [cls_id, center_x//256, center_y//256, w//256, h//256] 256=IMAGE_SIZE
"""
print('building database...')
gt_db = []
height, width = self.shapes
for mask in tqdm(list(self.mask_list)):
mask_path = str(mask)
label_path = mask_path.replace(str(self.mask_root), str(self.label_root)).replace(".png", ".json")
image_path = mask_path.replace(str(self.mask_root), str(self.img_root)).replace(".png", ".jpg")
lane_path = mask_path.replace(str(self.mask_root), str(self.lane_root))
with open(label_path, 'r') as f:
label = json.load(f)
data = label['frames'][0]['objects']
data = self.select_data(data)
gt = np.zeros((len(data), 5))
for idx, obj in enumerate(data):
category = obj['category']
if category == "traffic light":
color = obj['attributes']['trafficLightColor']
category = "tl_" + color
if category in self.id_dict.keys():
x1 = float(obj['box2d']['x1'])
y1 = float(obj['box2d']['y1'])
x2 = float(obj['box2d']['x2'])
y2 = float(obj['box2d']['y2'])
cls_id = self.id_dict[category]
if self.single_cls:
cls_id = 0
gt[idx][0] = cls_id
box = self.convert((width, height), (x1, x2, y1, y2))
gt[idx][1:] = list(box)
rec = [{
'image': image_path,
'label': gt,
'mask': mask_path,
'lane': lane_path
}]
# img = cv2.imread(image_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_UNCHANGED)
# # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# for label in gt:
# # print(label[1])
# x1 = label[1] - label[3] / 2
# x1 *= 1280
# x1 = int(x1)
# # print(x1)
# x2 = label[1] + label[3] / 2
# x2 *= 1280
# x2 = int(x2)
# y1 = label[2] - label[4] / 2
# y1 *= 720
# y1 = int(y1)
# y2 = label[2] + label[4] / 2
# y2 *= 720
# y2 = int(y2)
# img = cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
# cv2.imwrite('gt/{}'.format(image_path.split('/')[-1]), img)
gt_db += rec
print('database build finish')
return gt_db
def evaluate(self, params, preds, output_dir):
"""
finished on children dataset
"""
raise NotImplementedError
def __len__(self, ):
"""
number of objects in the dataset
"""
return len(self.db)
def __getitem__(self, idx):
"""
Get input and groud-truth from database & add data augmentation on input
Inputs:
-idx: the index of image in self.db(database)(list)
self.db(list) [a,b,c,...]
a: (dictionary){'image':, 'information':}
Returns:
-image: transformed image, first passed the data augmentation in __getitem__ function(type:numpy), then apply self.transform
-target: ground truth(det_gt,seg_gt)
function maybe useful
cv2.imread
cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
cv2.warpAffine
"""
data = self.db[idx]
img = cv2.imread(data["image"], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if self.params.num_seg_class == 3:
seg_label = cv2.imread(data["mask"])
else:
seg_label = cv2.imread(data["mask"], 0)
lane_label = cv2.imread(data["lane"], 0)
# print(lane_label.shape)
# print(seg_label.shape)
# print(lane_label.shape)
# print(seg_label.shape)
resized_shape = self.inputsize
if isinstance(resized_shape, list):
resized_shape = max(resized_shape)
h0, w0 = img.shape[:2] # orig hw
r = resized_shape / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
seg_label = cv2.resize(seg_label, (int(w0 * r), int(h0 * r)), interpolation=interp)
lane_label = cv2.resize(lane_label, (int(w0 * r), int(h0 * r)), interpolation=interp)
h, w = img.shape[:2]
(img, seg_label, lane_label), ratio, pad = letterbox((img, seg_label, lane_label), resized_shape, auto=True,
scaleup=self.is_train)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
# ratio = (w / w0, h / h0)
# print(resized_shape)
det_label = data["label"]
# print(det_label)
labels = []
labels_app = np.array([])
if det_label.size > 0:
# Normalized xywh to pixel xyxy format
labels = det_label.copy()
labels[:, 1] = ratio[0] * w * (det_label[:, 1] - det_label[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (det_label[:, 2] - det_label[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (det_label[:, 1] + det_label[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (det_label[:, 2] + det_label[:, 4] / 2) + pad[1]
# print(labels[:, 1:4])
if self.is_train:
# albumentations
try:
new = self.albumentations_transform(image=img, mask=seg_label, mask0=lane_label,
bboxes=labels[:, 1:] if len(labels) else labels,
class_labels=labels[:, 0] if len(labels) else labels)
img = new['image']
labels = np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) if len(labels) else labels
seg_label = new['mask']
lane_label = new['mask0']
except ValueError: # bbox have width or height == 0
pass
# augmentation
combination = (img, seg_label, lane_label)
(img, seg_label, lane_label), labels = random_perspective(
combination=combination,
targets=labels,
degrees=self.params.dataset['rot_factor'],
translate=self.params.dataset['translate'],
scale=self.params.dataset['scale_factor'],
shear=self.params.dataset['shear']
)
# print(labels.shape)
augment_hsv(img, hgain=self.params.dataset['hsv_h'], sgain=self.params.dataset['hsv_s'], vgain=self.params.dataset['hsv_v'])
# img, seg_label, labels = cutout(combination=combination, labels=labels)
# random left-right flip
lr_flip = True
if lr_flip and random.random() < 0.5:
img = img[:, ::-1, :]
if len(labels):
rows, cols, channels = img.shape
x1 = labels[:, 1].copy()
x2 = labels[:, 3].copy()
x_tmp = x1.copy()
labels[:, 1] = cols - x2
labels[:, 3] = cols - x_tmp
# Segmentation
seg_label = np.fliplr(seg_label)
lane_label = np.fliplr(lane_label)
# cv2.imwrite('img0.jpg',img)
# cv2.imwrite('img1.jpg',seg_label)
# cv2.imwrite('img2.jpg',lane_label)
# exit()
# print(labels)
# random up-down flip
ud_flip = False
if ud_flip and random.random() < 0.5:
img = np.flipud(img)
seg_label = np.filpud(seg_label)
lane_label = np.filpud(lane_label)
if len(labels):
rows, cols, channels = img.shape
y1 = labels[:, 2].copy()
y2 = labels[:, 4].copy()
y_tmp = y1.copy()
labels[:, 2] = rows - y2
labels[:, 4] = rows - y_tmp
# for anno in labels:
# x1, y1, x2, y2 = [int(x) for x in anno[1:5]]
# print(x1,y1,x2,y2)
# cv2.rectangle(img, (x1,y1), (x2,y2), (0,0,255), 3)
# cv2.imwrite(data["image"].split("/")[-1], img)
if len(labels):
labels_app = np.zeros((len(labels), 5))
labels_app[:, 0:4] = labels[:, 1:5]
labels_app[:, 4] = labels[:, 0]
img = np.ascontiguousarray(img)
_, seg1 = cv2.threshold(seg_label, 1, 255, cv2.THRESH_BINARY)
_, lane1 = cv2.threshold(lane_label, 1, 255, cv2.THRESH_BINARY)
# prefer lane
seg1 = seg1 - (seg1 & lane1)
union = seg1 | lane1
# print(union.shape)
background = 255 - union
# print(img.shape)
# print(lane1.shape)
# img_copy = img.copy()
# img_copy[lane1 == 255] = (0, 255, 0)
# cv2.imwrite('seg_gt/' + data['image'].split('/')[-1], img_copy)
# cv2.imwrite('background.jpg', background)
# cv2.imwrite('{}.jpg'.format(data['image'].split('/')[-1]), img)
# cv2.imwrite('{}-lane.jpg'.format(data['image'].split('/')[-1]),lane1)
# cv2.imwrite('{}-seg.jpg'.format(data['image'].split('/')[-1]),seg1)
seg1 = self.Tensor(seg1)
lane1 = self.Tensor(lane1)
background = self.Tensor(background)
segmentation = torch.cat([background, seg1, lane1], dim=0)
# print(segmentation.size())
# print(seg1.shape)
# for anno in labels_app:
# x1, y1, x2, y2 = [int(x) for x in anno[anno != -1][:4]]
# cv2.rectangle(img, (x1,y1), (x2,y2), (0,0,255), 1)
# cv2.imwrite(data["image"].split("/")[-1], img)
img = self.transform(img)
return img, data["image"], shapes, torch.from_numpy(labels_app), segmentation
def select_data(self, db):
"""
You can use this function to filter useless images in the dataset
Inputs:
-db: (list)database
Returns:
-db_selected: (list)filtered dataset
"""
remain = []
for obj in db:
if 'box2d' in obj.keys(): # obj.has_key('box2d'):
if self.single_cls:
if obj['category'] in self.id_dict_single.keys():
remain.append(obj)
else:
remain.append(obj)
return remain
def convert(self, size, box):
dw = 1. / (size[0])
dh = 1. / (size[1])
x = (box[0] + box[1]) / 2.0
y = (box[2] + box[3]) / 2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x * dw
w = w * dw
y = y * dh
h = h * dh
return x, y, w, h
@staticmethod
def collate_fn(batch):
img, paths, shapes, labels_app, segmentation = zip(*batch)
filenames = [file.split('/')[-1] for file in paths]
# print(len(labels_app))
max_num_annots = max(label.size(0) for label in labels_app)
if max_num_annots > 0:
annot_padded = torch.ones((len(labels_app), max_num_annots, 5)) * -1
for idx, label in enumerate(labels_app):
if label.size(0) > 0:
annot_padded[idx, :label.size(0), :] = label
else:
annot_padded = torch.ones((len(labels_app), 1, 5)) * -1
# print("ABC", seg1.size())
return {'img': torch.stack(img, 0), 'annot': annot_padded, 'segmentation': torch.stack(segmentation, 0),
'filenames': filenames, 'shapes': shapes}
|