File size: 16,141 Bytes
549e090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import cv2
import numpy as np
# np.set_printoptions(threshold=np.inf)
import random
import torch
import torchvision.transforms as transforms
from pathlib import Path
from torch.utils.data import Dataset
from utils.utils import letterbox, augment_hsv, random_perspective
from tqdm.autonotebook import tqdm
import json
import albumentations as A


class BddDataset(Dataset):
    def __init__(self, params, is_train, inputsize=640, transform=None):
        """
        initial all the characteristic

        Inputs:
        -params: configuration parameters
        -is_train(bool): whether train set or not
        -transform: ToTensor and Normalize

        Returns:
        None
        """
        self.single_cls = True  # just detect vehicle
        self.is_train = is_train
        self.params = params
        self.transform = transform
        self.inputsize = inputsize
        self.Tensor = transforms.ToTensor()
        img_root = Path(params.dataset['dataroot'])
        label_root = Path(params.dataset['labelroot'])
        mask_root = Path(params.dataset['maskroot'])
        lane_root = Path(params.dataset['laneroot'])
        if is_train:
            indicator = params.dataset['train_set']
        else:
            indicator = params.dataset['test_set']
        self.img_root = img_root / indicator
        self.label_root = label_root / indicator
        self.mask_root = mask_root / indicator
        self.lane_root = lane_root / indicator
        # self.label_list = self.label_root.iterdir()
        self.mask_list = self.mask_root.iterdir()
        self.data_format = params.dataset['data_format']
        self.scale_factor = params.dataset['scale_factor']
        self.rotation_factor = params.dataset['rot_factor']
        self.flip = params.dataset['flip']
        self.color_rgb = params.dataset['color_rgb']
        self.albumentations_transform = A.Compose([
            A.Blur(p=0.01),
            A.MedianBlur(p=0.01),
            A.ToGray(p=0.01),
            A.CLAHE(p=0.01),
            A.RandomBrightnessContrast(p=0.01),
            A.RandomGamma(p=0.01),
            A.ImageCompression(quality_lower=75, p=0.01)],
            bbox_params=A.BboxParams(format='pascal_voc', label_fields=['class_labels']),
            additional_targets={'mask0': 'mask'})

        # bdd_labels = {
        # 'unlabeled':0, 'dynamic': 1, 'ego vehicle': 2, 'ground': 3,
        # 'static': 4, 'parking': 5, 'rail track': 6, 'road': 7,
        # 'sidewalk': 8, 'bridge': 9, 'building': 10, 'fence': 11,
        # 'garage': 12, 'guard rail': 13, 'tunnel': 14, 'wall': 15,
        # 'banner': 16, 'billboard': 17, 'lane divider': 18,'parking sign': 19,
        # 'pole': 20, 'polegroup': 21, 'street light': 22, 'traffic cone': 23,
        # 'traffic device': 24, 'traffic light': 25, 'traffic sign': 26, 'traffic sign frame': 27,
        # 'terrain': 28, 'vegetation': 29, 'sky': 30, 'person': 31,
        # 'rider': 32, 'bicycle': 33, 'bus': 34, 'car': 35,
        # 'caravan': 36, 'motorcycle': 37, 'trailer': 38, 'train': 39,
        # 'truck': 40
        # }
        self.id_dict = {'person': 0, 'rider': 1, 'car': 2, 'bus': 3, 'truck': 4,
                'bike': 5, 'motor': 6, 'tl_green': 7, 'tl_red': 8,
                'tl_yellow': 9, 'tl_none': 10, 'traffic sign': 11, 'train': 12}
        self.id_dict_single = {'car': 0, 'bus': 1, 'truck': 2, 'train': 3}
        # id_dict = {'car': 0, 'bus': 1, 'truck': 2}

        self.shapes = np.array(params.dataset['org_img_size'])
        self.db = self._get_db()

    def _get_db(self):
        """
        get database from the annotation file

        Inputs:

        Returns:
        gt_db: (list)database   [a,b,c,...]
                a: (dictionary){'image':, 'information':, ......}
        image: image path
        mask: path of the segmetation label
        label: [cls_id, center_x//256, center_y//256, w//256, h//256] 256=IMAGE_SIZE
        """
        print('building database...')
        gt_db = []
        height, width = self.shapes
        for mask in tqdm(list(self.mask_list)):
            mask_path = str(mask)
            label_path = mask_path.replace(str(self.mask_root), str(self.label_root)).replace(".png", ".json")
            image_path = mask_path.replace(str(self.mask_root), str(self.img_root)).replace(".png", ".jpg")
            lane_path = mask_path.replace(str(self.mask_root), str(self.lane_root))
            with open(label_path, 'r') as f:
                label = json.load(f)
            data = label['frames'][0]['objects']
            data = self.select_data(data)
            gt = np.zeros((len(data), 5))
            for idx, obj in enumerate(data):
                category = obj['category']
                if category == "traffic light":
                    color = obj['attributes']['trafficLightColor']
                    category = "tl_" + color
                if category in self.id_dict.keys():
                    x1 = float(obj['box2d']['x1'])
                    y1 = float(obj['box2d']['y1'])
                    x2 = float(obj['box2d']['x2'])
                    y2 = float(obj['box2d']['y2'])
                    cls_id = self.id_dict[category]
                    if self.single_cls:
                        cls_id = 0
                    gt[idx][0] = cls_id
                    box = self.convert((width, height), (x1, x2, y1, y2))
                    gt[idx][1:] = list(box)

            rec = [{
                'image': image_path,
                'label': gt,
                'mask': mask_path,
                'lane': lane_path
            }]

            # img = cv2.imread(image_path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_UNCHANGED)
            # # img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            # for label in gt:
            #     # print(label[1])
            #     x1 = label[1] - label[3] / 2
            #     x1 *= 1280
            #     x1 = int(x1)
            #     # print(x1)
            #     x2 = label[1] + label[3] / 2
            #     x2 *= 1280
            #     x2 = int(x2)
            #     y1 = label[2] - label[4] / 2
            #     y1 *= 720
            #     y1 = int(y1)
            #     y2 = label[2] + label[4] / 2
            #     y2 *= 720
            #     y2 = int(y2)
            #     img = cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
            # cv2.imwrite('gt/{}'.format(image_path.split('/')[-1]), img)

            gt_db += rec
        print('database build finish')
        return gt_db


    def evaluate(self, params, preds, output_dir):
        """
        finished on children dataset
        """
        raise NotImplementedError

    def __len__(self, ):
        """
        number of objects in the dataset
        """
        return len(self.db)

    def __getitem__(self, idx):
        """
        Get input and groud-truth from database & add data augmentation on input

        Inputs:
        -idx: the index of image in self.db(database)(list)
        self.db(list) [a,b,c,...]
        a: (dictionary){'image':, 'information':}

        Returns:
        -image: transformed image, first passed the data augmentation in __getitem__ function(type:numpy), then apply self.transform
        -target: ground truth(det_gt,seg_gt)

        function maybe useful
        cv2.imread
        cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
        cv2.warpAffine
        """
        data = self.db[idx]
        img = cv2.imread(data["image"], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

        if self.params.num_seg_class == 3:
            seg_label = cv2.imread(data["mask"])
        else:
            seg_label = cv2.imread(data["mask"], 0)
        lane_label = cv2.imread(data["lane"], 0)

        # print(lane_label.shape)
        # print(seg_label.shape)
        # print(lane_label.shape)
        # print(seg_label.shape)
        resized_shape = self.inputsize
        if isinstance(resized_shape, list):
            resized_shape = max(resized_shape)
        h0, w0 = img.shape[:2]  # orig hw
        r = resized_shape / max(h0, w0)  # resize image to img_size
        if r != 1:  # always resize down, only resize up if training with augmentation
            interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
            img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
            seg_label = cv2.resize(seg_label, (int(w0 * r), int(h0 * r)), interpolation=interp)
            lane_label = cv2.resize(lane_label, (int(w0 * r), int(h0 * r)), interpolation=interp)
        h, w = img.shape[:2]

        (img, seg_label, lane_label), ratio, pad = letterbox((img, seg_label, lane_label), resized_shape, auto=True,
                                                             scaleup=self.is_train)
        shapes = (h0, w0), ((h / h0, w / w0), pad)  # for COCO mAP rescaling
        # ratio = (w / w0, h / h0)
        # print(resized_shape)

        det_label = data["label"]
        # print(det_label)

        labels = []
        labels_app = np.array([])

        if det_label.size > 0:
            # Normalized xywh to pixel xyxy format
            labels = det_label.copy()
            labels[:, 1] = ratio[0] * w * (det_label[:, 1] - det_label[:, 3] / 2) + pad[0]  # pad width
            labels[:, 2] = ratio[1] * h * (det_label[:, 2] - det_label[:, 4] / 2) + pad[1]  # pad height
            labels[:, 3] = ratio[0] * w * (det_label[:, 1] + det_label[:, 3] / 2) + pad[0]
            labels[:, 4] = ratio[1] * h * (det_label[:, 2] + det_label[:, 4] / 2) + pad[1]

        # print(labels[:, 1:4])
        if self.is_train:
            # albumentations
            try:
                new = self.albumentations_transform(image=img, mask=seg_label, mask0=lane_label,
                                                    bboxes=labels[:, 1:] if len(labels) else labels,
                                                    class_labels=labels[:, 0] if len(labels) else labels)
                img = new['image']
                labels = np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])]) if len(labels) else labels
                seg_label = new['mask']
                lane_label = new['mask0']
            except ValueError:  # bbox have width or height == 0
                pass

            # augmentation
            combination = (img, seg_label, lane_label)
            (img, seg_label, lane_label), labels = random_perspective(
                combination=combination,
                targets=labels,
                degrees=self.params.dataset['rot_factor'],
                translate=self.params.dataset['translate'],
                scale=self.params.dataset['scale_factor'],
                shear=self.params.dataset['shear']
            )
#             print(labels.shape)
            augment_hsv(img, hgain=self.params.dataset['hsv_h'], sgain=self.params.dataset['hsv_s'], vgain=self.params.dataset['hsv_v'])
#             img, seg_label, labels = cutout(combination=combination, labels=labels)

            # random left-right flip
            lr_flip = True
            if lr_flip and random.random() < 0.5:
                img = img[:, ::-1, :]

                if len(labels):
                    rows, cols, channels = img.shape

                    x1 = labels[:, 1].copy()
                    x2 = labels[:, 3].copy()

                    x_tmp = x1.copy()

                    labels[:, 1] = cols - x2
                    labels[:, 3] = cols - x_tmp
                
                # Segmentation
                seg_label = np.fliplr(seg_label)
                lane_label = np.fliplr(lane_label)
                
#                 cv2.imwrite('img0.jpg',img)
#                 cv2.imwrite('img1.jpg',seg_label)
#                 cv2.imwrite('img2.jpg',lane_label)
                
#                 exit()

            # print(labels)

            # random up-down flip
            ud_flip = False
            if ud_flip and random.random() < 0.5:
                img = np.flipud(img)
                seg_label = np.filpud(seg_label)
                lane_label = np.filpud(lane_label)
                if len(labels):
                    rows, cols, channels = img.shape

                    y1 = labels[:, 2].copy()
                    y2 = labels[:, 4].copy()

                    y_tmp = y1.copy()

                    labels[:, 2] = rows - y2
                    labels[:, 4] = rows - y_tmp

        # for anno in labels:
        #   x1, y1, x2, y2 = [int(x) for x in anno[1:5]]
        #   print(x1,y1,x2,y2)
        #   cv2.rectangle(img, (x1,y1), (x2,y2), (0,0,255), 3)
        # cv2.imwrite(data["image"].split("/")[-1], img)

        if len(labels):
            labels_app = np.zeros((len(labels), 5))
            labels_app[:, 0:4] = labels[:, 1:5]
            labels_app[:, 4] = labels[:, 0]

        img = np.ascontiguousarray(img)

        _, seg1 = cv2.threshold(seg_label, 1, 255, cv2.THRESH_BINARY)
        _, lane1 = cv2.threshold(lane_label, 1, 255, cv2.THRESH_BINARY)
        # prefer lane
        seg1 = seg1 - (seg1 & lane1)

        union = seg1 | lane1
        # print(union.shape)
        background = 255 - union

        #         print(img.shape)
        #         print(lane1.shape)
        #         img_copy = img.copy()
        #         img_copy[lane1 == 255] = (0, 255, 0)
        #         cv2.imwrite('seg_gt/' + data['image'].split('/')[-1], img_copy)
        #         cv2.imwrite('background.jpg', background)
        #         cv2.imwrite('{}.jpg'.format(data['image'].split('/')[-1]), img)
        #         cv2.imwrite('{}-lane.jpg'.format(data['image'].split('/')[-1]),lane1)
        #         cv2.imwrite('{}-seg.jpg'.format(data['image'].split('/')[-1]),seg1)

        seg1 = self.Tensor(seg1)
        lane1 = self.Tensor(lane1)
        background = self.Tensor(background)

        segmentation = torch.cat([background, seg1, lane1], dim=0)
        # print(segmentation.size())
        # print(seg1.shape)

        # for anno in labels_app:
        #   x1, y1, x2, y2 = [int(x) for x in anno[anno != -1][:4]]
        #   cv2.rectangle(img, (x1,y1), (x2,y2), (0,0,255), 1)
        # cv2.imwrite(data["image"].split("/")[-1], img)

        img = self.transform(img)

        return img, data["image"], shapes, torch.from_numpy(labels_app), segmentation

    def select_data(self, db):
        """
        You can use this function to filter useless images in the dataset

        Inputs:
        -db: (list)database

        Returns:
        -db_selected: (list)filtered dataset
        """
        remain = []
        for obj in db:
            if 'box2d' in obj.keys():  # obj.has_key('box2d'):
                if self.single_cls:
                    if obj['category'] in self.id_dict_single.keys():
                        remain.append(obj)
                else:
                    remain.append(obj)
        return remain

    def convert(self, size, box):
            dw = 1. / (size[0])
            dh = 1. / (size[1])
            x = (box[0] + box[1]) / 2.0
            y = (box[2] + box[3]) / 2.0
            w = box[1] - box[0]
            h = box[3] - box[2]
            x = x * dw
            w = w * dw
            y = y * dh
            h = h * dh
            return x, y, w, h
        
    @staticmethod
    def collate_fn(batch):
        img, paths, shapes, labels_app, segmentation = zip(*batch)
        filenames = [file.split('/')[-1] for file in paths]
        # print(len(labels_app))
        max_num_annots = max(label.size(0) for label in labels_app)

        if max_num_annots > 0:
            annot_padded = torch.ones((len(labels_app), max_num_annots, 5)) * -1
            for idx, label in enumerate(labels_app):
                if label.size(0) > 0:
                    annot_padded[idx, :label.size(0), :] = label
        else:
            annot_padded = torch.ones((len(labels_app), 1, 5)) * -1

        # print("ABC", seg1.size())
        return {'img': torch.stack(img, 0), 'annot': annot_padded, 'segmentation': torch.stack(segmentation, 0),
                'filenames': filenames, 'shapes': shapes}