File size: 5,608 Bytes
80f1cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import time
import torch
from torch.backends import cudnn
from backbone import HybridNetsBackbone
import cv2
import numpy as np
from glob import glob
from utils.utils import letterbox, scale_coords, postprocess, BBoxTransform, ClipBoxes, restricted_float, boolean_string
from utils.plot import STANDARD_COLORS, standard_to_bgr, get_index_label, plot_one_box
import os
from torchvision import transforms
import argparse

parser = argparse.ArgumentParser('HybridNets: End-to-End Perception Network - DatVu')
parser.add_argument('-c', '--compound_coef', type=int, default=3, help='Coefficient of efficientnet backbone')
parser.add_argument('--source', type=str, default='demo/video', help='The demo video folder')
parser.add_argument('--output', type=str, default='demo_result', help='Output folder')
parser.add_argument('-w', '--load_weights', type=str, default='weights/hybridnets.pth')
parser.add_argument('--nms_thresh', type=restricted_float, default='0.25')
parser.add_argument('--iou_thresh', type=restricted_float, default='0.3')
parser.add_argument('--cuda', type=boolean_string, default=True)
parser.add_argument('--float16', type=boolean_string, default=True, help="Use float16 for faster inference")
args = parser.parse_args()

compound_coef = args.compound_coef
source = args.source
if source.endswith("/"):
    source = source[:-1]
output = args.output
if output.endswith("/"):
    output = output[:-1]
weight = args.load_weights
video_src = glob(f'{source}/*.mp4')[0]
os.makedirs(output, exist_ok=True)
video_out = f'{output}/output.mp4'
input_imgs = []
shapes = []

# replace this part with your project's anchor config
anchor_ratios = [(0.62, 1.58), (1.0, 1.0), (1.58, 0.62)]
anchor_scales = [2 ** 0, 2 ** 0.70, 2 ** 1.32]

threshold = args.nms_thresh
iou_threshold = args.iou_thresh

use_cuda = args.cuda
use_float16 = args.float16
cudnn.fastest = True
cudnn.benchmark = True

obj_list = ['car']

color_list = standard_to_bgr(STANDARD_COLORS)
resized_shape = 640
normalize = transforms.Normalize(
    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
transform = transforms.Compose([
    transforms.ToTensor(),
    normalize,
])
# print(x.shape)

model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(obj_list),
                           ratios=anchor_ratios, scales=anchor_scales, seg_classes=2)
try:
    model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu'))
except:
    model.load_state_dict(torch.load(weight, map_location='cuda' if use_cuda else 'cpu')['model'])
model.requires_grad_(False)
model.eval()

if use_cuda:
    model = model.cuda()
if use_float16:
    model = model.half()
cap = cv2.VideoCapture(video_src)
# Define the codec and create VideoWriter object
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out_stream = cv2.VideoWriter(video_out, fourcc, 30.0,
                             (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
t1 = time.time()
frame_count = 0
while True:
    ret, frame = cap.read()
    if not ret:
        break

    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    h0, w0 = frame.shape[:2]  # orig hw
    r = resized_shape / max(h0, w0)  # resize image to img_size
    input_img = cv2.resize(frame, (int(w0 * r), int(h0 * r)), interpolation=cv2.INTER_AREA)
    h, w = input_img.shape[:2]

    (input_img, _, _), ratio, pad = letterbox((input_img, input_img.copy(), input_img.copy()), resized_shape, auto=True,
                                              scaleup=False)

    shapes = ((h0, w0), ((h / h0, w / w0), pad))

    if use_cuda:
        x = transform(input_img).cuda()
    else:
        x = transform(input_img)

    x = x.to(torch.float32 if not use_float16 else torch.float16)
    x.unsqueeze_(0)
    with torch.no_grad():
        features, regression, classification, anchors, seg = model(x)

        seg = seg[:, :, 12:372, :]
        da_seg_mask = torch.nn.functional.interpolate(seg, size=[h0, w0], mode='nearest')
        _, da_seg_mask = torch.max(da_seg_mask, 1)
        da_seg_mask_ = da_seg_mask[0].squeeze().cpu().numpy().round()

        color_area = np.zeros((da_seg_mask_.shape[0], da_seg_mask_.shape[1], 3), dtype=np.uint8)
        color_area[da_seg_mask_ == 1] = [0, 255, 0]
        color_area[da_seg_mask_ == 2] = [0, 0, 255]
        color_seg = color_area[..., ::-1]

        # cv2.imwrite('seg_only_{}.jpg'.format(i), color_seg)

        color_mask = np.mean(color_seg, 2)
        frame[color_mask != 0] = frame[color_mask != 0] * 0.5 + color_seg[color_mask != 0] * 0.5
        frame = frame.astype(np.uint8)
        # cv2.imwrite('seg_{}.jpg'.format(i), ori_img)

        regressBoxes = BBoxTransform()
        clipBoxes = ClipBoxes()
        out = postprocess(x,
                          anchors, regression, classification,
                          regressBoxes, clipBoxes,
                          threshold, iou_threshold)
        out = out[0]
        out['rois'] = scale_coords(frame[:2], out['rois'], shapes[0], shapes[1])
        for j in range(len(out['rois'])):
            x1, y1, x2, y2 = out['rois'][j].astype(int)
            obj = obj_list[out['class_ids'][j]]
            score = float(out['scores'][j])
            plot_one_box(frame, [x1, y1, x2, y2], label=obj, score=score,
                         color=color_list[get_index_label(obj, obj_list)])
        out_stream.write(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        frame_count += 1

t2 = time.time()
print("frame: {}".format(frame_count))
print("second: {}".format(t2-t1))
print("fps: {}".format((t2-t1)/frame_count))

cap.release()
out_stream.release()