File size: 5,811 Bytes
89564ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
from torch import nn
import timm

from hybridnets.model import BiFPN, Regressor, Classifier, BiFPNDecoder
from utils.utils import Anchors
from hybridnets.model import SegmentationHead

from encoders import get_encoder

class HybridNetsBackbone(nn.Module):
    def __init__(self, num_classes=80, compound_coef=0, seg_classes=1, backbone_name=None, **kwargs):
        super(HybridNetsBackbone, self).__init__()
        self.compound_coef = compound_coef

        self.seg_classes = seg_classes

        self.backbone_compound_coef = [0, 1, 2, 3, 4, 5, 6, 6, 7]
        self.fpn_num_filters = [64, 88, 112, 160, 224, 288, 384, 384, 384]
        self.fpn_cell_repeats = [3, 4, 5, 6, 7, 7, 8, 8, 8]
        self.input_sizes = [512, 640, 768, 896, 1024, 1280, 1280, 1536, 1536]
        self.box_class_repeats = [3, 3, 3, 4, 4, 4, 5, 5, 5]
        self.pyramid_levels = [5, 5, 5, 5, 5, 5, 5, 5, 6]
        self.anchor_scale = [1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,1.25,]
        self.aspect_ratios = kwargs.get('ratios', [(1.0, 1.0), (1.4, 0.7), (0.7, 1.4)])
        self.num_scales = len(kwargs.get('scales', [2 ** 0, 2 ** (1.0 / 3.0), 2 ** (2.0 / 3.0)]))
        conv_channel_coef = {
            # the channels of P3/P4/P5.
            0: [40, 112, 320],
            1: [40, 112, 320],
            2: [48, 120, 352],
            3: [48, 136, 384],
            4: [56, 160, 448],
            5: [64, 176, 512],
            6: [72, 200, 576],
            7: [72, 200, 576],
            8: [80, 224, 640],
        }

        num_anchors = len(self.aspect_ratios) * self.num_scales

        self.bifpn = nn.Sequential(
            *[BiFPN(self.fpn_num_filters[self.compound_coef],
                    conv_channel_coef[compound_coef],
                    True if _ == 0 else False,
                    attention=True if compound_coef < 6 else False,
                    use_p8=compound_coef > 7)
              for _ in range(self.fpn_cell_repeats[compound_coef])])

        self.num_classes = num_classes
        self.regressor = Regressor(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors,
                                   num_layers=self.box_class_repeats[self.compound_coef],
                                   pyramid_levels=self.pyramid_levels[self.compound_coef])

        '''Modified by Dat Vu'''
        # self.decoder = DecoderModule()
        self.bifpndecoder = BiFPNDecoder(pyramid_channels=self.fpn_num_filters[self.compound_coef])

        self.segmentation_head = SegmentationHead(
            in_channels=64,
            out_channels=self.seg_classes+1 if self.seg_classes > 1 else self.seg_classes,
            activation='softmax2d' if self.seg_classes > 1 else 'sigmoid',
            kernel_size=1,
            upsampling=4,
        )

        self.classifier = Classifier(in_channels=self.fpn_num_filters[self.compound_coef], num_anchors=num_anchors,
                                     num_classes=num_classes,
                                     num_layers=self.box_class_repeats[self.compound_coef],
                                     pyramid_levels=self.pyramid_levels[self.compound_coef])

        self.anchors = Anchors(anchor_scale=self.anchor_scale[compound_coef],
                               pyramid_levels=(torch.arange(self.pyramid_levels[self.compound_coef]) + 3).tolist(),
                               **kwargs)

        if backbone_name:
            # Use timm to create another backbone that you prefer
            # https://github.com/rwightman/pytorch-image-models
            self.encoder = timm.create_model(backbone_name, pretrained=True, features_only=True, out_indices=(2,3,4))  # P3,P4,P5
        else:
            # EfficientNet_Pytorch
            self.encoder = get_encoder(
                'efficientnet-b' + str(self.backbone_compound_coef[compound_coef]),
                in_channels=3,
                depth=5,
                weights='imagenet',
            )
    
        self.initialize_decoder(self.bifpndecoder)
        self.initialize_head(self.segmentation_head)
        self.initialize_decoder(self.bifpn)

    def freeze_bn(self):
        for m in self.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()

    def forward(self, inputs):
        max_size = inputs.shape[-1]

        # p1, p2, p3, p4, p5 = self.backbone_net(inputs)
        p2, p3, p4, p5 = self.encoder(inputs)[-4:]  # self.backbone_net(inputs)

        features = (p3, p4, p5)

        features = self.bifpn(features)
        
        p3,p4,p5,p6,p7 = features
        
        outputs = self.bifpndecoder((p2,p3,p4,p5,p6,p7))

        segmentation = self.segmentation_head(outputs)
        
        regression = self.regressor(features)
        classification = self.classifier(features)
        anchors = self.anchors(inputs, inputs.dtype)

        return features, regression, classification, anchors, segmentation
    
    def initialize_decoder(self, module):
        for m in module.modules():

            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_uniform_(m.weight, mode="fan_in", nonlinearity="relu")
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

            elif isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)


    def initialize_head(self, module):
        for m in module.modules():
            if isinstance(m, (nn.Linear, nn.Conv2d)):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)