Spaces:
Configuration error
Configuration error
File size: 6,089 Bytes
0a06e4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
"""
This testing script loads actual probabilisitic predictions from a resnet finetuned on CIFAR
There are a number of logits-groundtruth pickles available @ https://github.com/markus93/NN_calibration/tree/master/logits
[Seems to have moved from Git-LFS to sharepoint]
https://tartuulikool-my.sharepoint.com/:f:/g/personal/markus93_ut_ee/EmW0xbhcic5Ou0lRbTrySOUBF2ccSsN7lo6lvSfuG1djew?e=l0TErb
See https://github.com/markus93/NN_calibration/blob/master/logits/Readme.txt to decode the [model_dataset] filenames
As a bonus, one could consider temperature scaling and measuring after calibration.
"""
import sys
import numpy as np
import scipy.stats as stats
from scipy.special import softmax
import pickle
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
from ece import create_bins, discretize_into_bins, ECE
# Open file with pickled variables
def unpickle_probs(file, verbose=0, normalize=True):
with open(file, "rb") as f: # Python 3: open(..., 'rb')
y1, y2 = pickle.load(f) # unpickle the content
if isinstance(y1, tuple):
y_probs_val, y_val = y1
y_probs_test, y_test = y2
else:
y_probs_val, y_probs_test, y_val, y_test = train_test_split(
y1, y2.reshape(-1, 1), test_size=len(y2) - 5000, random_state=15
) # Splits the data in the case of pretrained models
if normalize:
y_probs_val = softmax(y_probs_val, -1)
y_probs_test = softmax(y_probs_test, -1)
if verbose:
print(
"y_probs_val:", y_probs_val.shape
) # (5000, 10); Validation set probabilities of predictions
print("y_true_val:", y_val.shape) # (5000, 1); Validation set true labels
print("y_probs_test:", y_probs_test.shape) # (10000, 10); Test set probabilities
print("y_true_test:", y_test.shape) # (10000, 1); Test set true labels
return ((y_probs_val, y_val.ravel()), (y_probs_test, y_test.ravel()))
def unpickle_structured_probs(valpath=None, testpath=None):
valpath = "/home/jordy/code/gordon/arkham/arkham/StructuredCalibration/models/jordyvl/bert-base-cased_conll2003-sm-first-ner_validation_UTY.pickle"
testpath = "/home/jordy/code/gordon/arkham/arkham/StructuredCalibration/models/jordyvl/bert-base-cased_conll2003-sm-first-ner_test_UTY.pickle"
with open(valpath, "rb") as f:
X_val, _, y_val, _ = pickle.load(f)
with open(testpath, "rb") as f:
X_test, _, y_test, _ = pickle.load(f)
X_val = np.log(X_val) # originally exponentiated [different purposes]
X_test = np.log(X_test) # originally exponentiated [different purposes]
# structured logits
"""
ALTERNATE equal mass binning
"""
# Define data types.
from typing import List, Tuple, NewType, TypeVar
Data = List[Tuple[float, float]] # List of (predicted_probability, true_label).
Bins = List[float] # List of bin boundaries, excluding 0.0, but including 1.0.
BinnedData = List[Data] # binned_data[i] contains the data in bin i.
T = TypeVar('T')
eps = 1e-6
def split(sequence: List[T], parts: int) -> List[List[T]]:
assert parts <= len(sequence), "more bins than probabilities"
part_size = int(np.ceil(len(sequence) * 1.0 / parts))
assert part_size * parts >= len(sequence), "no missing instances when partitioning"
assert (part_size - 1) * parts < len(sequence), "dropping 1 does not make for missing"
return [sequence[i:i + part_size] for i in range(0, len(sequence), part_size)]
def get_equal_bins(probs: List[float], n_bins: int=10) -> Bins:
"""Get bins that contain approximately an equal number of data points."""
sorted_probs = sorted(probs)
binned_data = split(sorted_probs, n_bins)
bins: Bins = []
for i in range(len(binned_data) - 1):
last_prob = binned_data[i][-1]
next_first_prob = binned_data[i + 1][0]
bins.append((last_prob + next_first_prob) / 2.0)
bins.append(1.0)
bins = sorted(list(set(bins))) #this is the special thing!
return bins
def histedges_equalN(x, nbin):
npt = len(x)
return np.interp(np.linspace(0, npt, nbin + 1),
np.arange(npt),
np.sort(x))
'''
bin_upper_edges = histedges_equalN(P, n_bins)
#n, bins, patches = plt.hist(x, histedges_equalN(x, 10))
'''
def test_equalmass_binning(P, Y):
#probs = np.array([0.63, 0.2, 0.2, 0, 0.95, 0.05, 0.72, 0.1, 0.2])
kwargs = dict(
n_bins= 10,
scheme="equal-mass",
bin_range=None,
proxy="upper-edge",
#proxy="center",
p=1,
detail=True,
)
if P.ndim == 2: #can assume ECE
p_max = np.max(P, -1) # create p̂ as top-1 softmax probability € [0,1]
eqr_bins = create_bins(n_bins=kwargs["n_bins"], scheme="equal-range", bin_range=kwargs["bin_range"], P=p_max)
eqm_bins = create_bins(n_bins=kwargs["n_bins"], scheme=kwargs["scheme"], bin_range=kwargs["bin_range"], P=p_max)
#alternate_eqm_bins = get_equal_bins(p_max, kwargs["n_bins"])
eqr_hist = np.digitize(p_max, eqr_bins, right=True)
eqm_hist = np.digitize(p_max, eqm_bins, right=True)
eqml_hist = np.digitize(p_max, eqm_bins, right=False)
#eqm_bins = [0] + eqm_bins
other_hist = discretize_into_bins(np.expand_dims(p_max, 0), eqm_bins)
hist_difference = stats.power_divergence(eqr_hist, eqm_hist, lambda_="pearson") #chisquare
#plt.hist(eqr_hist, color="green", label="equal-range")
plt.hist(eqm_hist, color="blue", label="equal-mass")
plt.legend()
#plt.show()
res = ECE()._compute(P, Y, **kwargs)
print(f"eqm ECE: {res['ECE']}")
kwargs["scheme"] = "equal-range"
res = ECE()._compute(P, Y, **kwargs)
print(f"eqr ECE: {res['ECE']}")
# res = ECE()._compute(predictions, references, detail=True)
# print(f"ECE: {res['ECE']}")
if __name__ == "__main__":
FILE_PATH = sys.argv[1] if len(sys.argv) > 1 else "resnet110_c10_logits.p"
(p_val, y_val), (p_test, y_test) = unpickle_probs(FILE_PATH, False, True)
test_equalmass_binning(p_val, y_val)
# do on val
|