File size: 7,075 Bytes
6c0ff19 713451f 6c0ff19 713451f 6c0ff19 713451f 6c0ff19 713451f 6c0ff19 713451f 6c0ff19 6be2dfa 6c0ff19 7659ef8 6c0ff19 7659ef8 6c0ff19 7659ef8 6c0ff19 7659ef8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import os
from pathlib import Path
import pandas as pd
import gradio as gr
from collections import OrderedDict
from PIL import Image, ImageDraw, ImageFont
from io import BytesIO
import PyPDF2
import pdf2image
MAX_PAGES = 50
MAX_PDF_SIZE = 100000000 # almost 100MB
MIN_WIDTH, MIN_HEIGHT = 150, 150
"""
Load diagnostic dataset
Have pointer to local PDF/grid files
Visualize PDF/grid files based on slider values and (randonly) sampled combination of sliders
--> truly interactive visualization of diagnostic samples and their questions
"""
PDF_PATH = Path("/home/jordy/Downloads/DUDE_train-val-test_binaries/PDF")
DIAGNOSTIC_PATH = "/home/jordy/code/DUchallenge/DUeval/diagnostic_test-updated.csv" # need access to local path; otherwise will not work
answer_types = {
"abstractive": "Abstractive",
"extractive": "Extractive",
"not-answerable": "Not Answerable",
"list/abstractive": "Abstractive List",
"list/extractive": "Extractive List",
}
DIAGNOSTIC_TEST = None
if os.path.exists(DIAGNOSTIC_PATH):
DIAGNOSTIC_TEST = pd.read_csv(DIAGNOSTIC_PATH)
meta_cats = OrderedDict(
{
"complexity": ["meta", "multihop", "other_hard", "simple", None],
"evidence": [
"handwriting",
"layout",
"plain",
"table_or_list",
"visual_chart",
"visual_checkbox",
"visual_color",
"visual_image",
"visual_logo",
"visual_map",
"visual_other",
"visual_signature",
"visual_stamp",
None,
],
"form": ["date", "numeric", "other", "proper", None],
"operation": ["arithmetic", "comparison", "counting", "normalization", None],
"type": ["abstractive", "extractive", None],
}
)
diagnostic_cats = [
"complexity_meta",
"complexity_multihop",
"complexity_other_hard",
"complexity_simple",
"evidence_handwriting",
"evidence_layout",
"evidence_plain",
"evidence_table_or_list",
"evidence_visual_chart",
"evidence_visual_checkbox",
"evidence_visual_color",
"evidence_visual_image",
"evidence_visual_logo",
"evidence_visual_map",
"evidence_visual_other",
"evidence_visual_signature",
"evidence_visual_stamp",
"form_date",
"form_numeric",
"form_other",
"form_proper",
"operation_arithmetic",
"operation_comparison",
"operation_counting",
"operation_normalization",
"type_abstractive",
"type_extractive",
# "num_pages",
# "num_tokens",
]
# DIAGNOSTIC_TEST = DIAGNOSTIC_TEST[interest_cols + ["row_hash"]]
sliders = [gr.Dropdown(choices=choices, value=choices[-1], label=label) for label, choices in meta_cats.items()]
slider_defaults = [None, "visual_checkbox", None, None, None] # [slider.value for slider in sliders]
def equal_image_grid(images):
def compute_grid(n, max_cols=6):
equalDivisor = int(n**0.5)
cols = min(equalDivisor, max_cols)
rows = equalDivisor
if rows * cols >= n:
return rows, cols
cols += 1
if rows * cols >= n:
return rows, cols
while rows * cols < n:
rows += 1
return rows, cols
# assert len(images) == rows*cols
rows, cols = compute_grid(len(images))
# rescaling to min width [height padding]
images = [im for im in images if (im.height > 0) and (im.width > 0)] # could be NA
min_width = min(im.width for im in images)
images = [im.resize((min_width, int(im.height * min_width / im.width)), resample=Image.BICUBIC) for im in images]
w, h = max([img.size[0] for img in images]), max([img.size[1] for img in images])
grid = Image.new("RGB", size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(images):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def add_pagenumbers(im_list, height_scale=40):
def add_pagenumber(image, i):
width, height = image.size
draw = ImageDraw.Draw(image)
fontsize = int((width * height) ** (0.5) / height_scale)
font = ImageFont.truetype("Arial.ttf", fontsize)
margin = int(2 * fontsize)
draw.text(
(width - margin, height - margin),
str(i + 1),
fill="#D00917",
font=font,
spacing=4,
align="right",
)
for i, image in enumerate(im_list):
add_pagenumber(image, i)
def pdf_to_grid(pdf_path):
reader = PyPDF2.PdfReader(pdf_path)
reached_page_limit = False
images = []
try:
for p, page in enumerate(reader.pages):
if reached_page_limit:
break
for image in page.images:
im = Image.open(BytesIO(image.data))
if im.width < MIN_WIDTH and im.height < MIN_HEIGHT:
continue
images.append(im)
except Exception as e:
print(f"{pdf_path} PyPDF get_images {e}")
images = pdf2image.convert_from_path(pdf_path)
# simpler but slower
# images = pdf2image.convert_from_path(pdf_path)
if len(images) == 0:
return None
add_pagenumbers(images)
return equal_image_grid(images)
def main(complexity, evidence, form, operation, type):
# need to write a query on diagnostic test and sample from it based on slider values
# then return the sample
query = " and ".join(
[
f"{cat}_{val} == {True}"
for cat, val in zip(meta_cats.keys(), [complexity, evidence, form, operation, type])
if val
]
)
results = DIAGNOSTIC_TEST.query(query)
if len(results) == 0:
return f"No results found for query {query}", "", "", "", ""
for i, sample in results.sample(frac=1).iterrows():
print("Sampled: ", sample["nhash"])
# first get PDF file
PDF, grid = None, None
pdf_path = PDF_PATH / "test" / (sample["nhash"] + ".pdf")
if not os.path.exists(pdf_path):
continue
PDF = pdf_path
grid = pdf_to_grid(pdf_path)
if not grid:
continue
# opem and visualize as grid image
question, answer = sample["question"], sample["answer"]
# get columns where sample is True
diagnostics = ", ".join([cat for cat in diagnostic_cats if sample[cat]])
return question, answer, diagnostics, grid, PDF
# test
# q, a, d, im, f = main(*slider_defaults)
outputs = [
gr.Textbox(label="question"),
gr.Textbox(label="answer"),
gr.Textbox(label="diagnostics"),
gr.Image(label="image grid of PDF"),
gr.File(label="PDF"),
]
iface = gr.Interface(fn=main, inputs=sliders, outputs=outputs, description="Visualize diagnostic samples from DUDE")
iface.launch(share=True)
|