Spaces:
Sleeping
Sleeping
File size: 4,137 Bytes
6552662 97dce6a 6552662 cad8400 97dce6a 6faf128 dfc296a d673e94 48fa3fe 97dce6a dfc296a 97dce6a 48fa3fe ae07959 c43c8ba cad8400 d673e94 cad8400 81c6112 cad8400 c43c8ba cad8400 d673e94 cad8400 d673e94 cad8400 b254c31 2bc826c b254c31 2bc826c b254c31 2bc826c ae07959 b254c31 ae07959 b254c31 ae07959 b254c31 ae07959 b254c31 fc440c4 6552662 fc440c4 6552662 fc440c4 6552662 fc440c4 6552662 fc440c4 6552662 fc440c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import gradio as gr
gr.load("models/microsoft/Phi-3.5-mini-instruct", max_batch_size=1000).launch(share=True)
# def generate_responce(user_input):
# gr.load("models/microsoft/Phi-3.5-mini-instruct")
# inputs = tokenize(user_input, return_tensor="pt")
# outputs =
# gradio_app = gr.Interface(
# fn=generate_responce,
# inputs="text",
# outputs="text",
# max_batch_size=50,
# title="Advertisment companion",
# )
# from transformers import AutoTokenizer, AutoModelForCausalLM
# import torch
# # Load the model and tokenizer
# tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained("microsoft/Phi-3.5-mini-instruct", trust_remote_code=True)
# # Define the role prompt for advertisement assistance
# # role_prompt = "You are an advertisement assistant. Respond professionally and helpfully to advertising-related questions.\n\n"
# # Function to generate responses
# def generate_response(user_input):
# # Prepend role information to user input
# # input_text = user_input
# # Tokenize and generate response
# inputs = tokenizer(user_input, return_tensors="pt")
# outputs = model.generate(
# **inputs,
# max_new_tokens=100, # Increase this if you want longer responses
# # Nucleus sampling to control randomness
# )
# # Decode and return the response
# response = tokenizer.batch_decode(outputs, skip_special_tokens=True)
# return response
# # Set up Gradio interface
# interface = gr.Interface(
# fn=generate_response,
# inputs="text",
# outputs="text",
# title="Advertisement Assistant Chatbot",
# description="Ask me anything related to advertising. I'm here to help!"
# )
# # Launch the Gradio app with sharing enabled
# interface.launch(share=True)
# import gradio as gr
# from transformers import pipeline
# # Load the model pipeline for text generation
# generator = pipeline("text-generation", model="microsoft/Phi-3.5-mini-instruct")
# # Define the role prompt for advertisement assistance
# role_prompt = "You are an advertisement assistant. Respond professionally and helpfully to advertising-related questions.\n\n"
# # Function to generate responses
# def generate_response(user_input):
# input_text = role_prompt + user_input
# response = generator(input_text, max_new_tokens=50, temperature=0.7, top_p=0.9)
# return response[0]["generated_text"]
# # Set up Gradio interface
# interface = gr.Interface(
# fn=generate_response,
# inputs="text",
# outputs="text",
# title="Advertisement Assistant Chatbot",
# description="Ask me anything related to advertising. I'm here to help!"
# )
# # Launch the Gradio app with sharing enabled
# interface.launch(share=True)
# import gradio as gr
# # Load the model using gr.load()
# model_interface = gr.load("models/microsoft/Phi-3.5-mini-instruct")
# # Create a wrapper interface to customize the appearance
# interface = gr.Interface(
# fn=model_interface,
# inputs="text",
# outputs="text",
# title="Advertisement Assistant Chatbot",
# description="Ask me anything related to advertising. I'm here to help! This assistant provides professional guidance on advertising queries.",
# theme="default", # Optional: Choose a theme or style
# )
# # Launch with sharing enabled
# interface.launch(share=True)
# import gradio as gr
# from transformers import pipeline
# huggingface-cli login
# text_generator = pipeline("text-generation", model="meta-llama/Llama-3.2-1B")
# def predict(input_text):
# predictions = text_generator(input_text, max_new_tokens=50, num_return_sequences=1)
# return predictions[0]["generated_text"]
# gradio_app = gr.Interface(
# predict,
# inputs=gr.Textbox(label="Enter text for generation"),
# outputs=gr.Textbox(label="Generated Text"),
# title="Text Generation Model",
# description="This app generates text based on input prompts."
# )
# if __name__ == "__main__":
# gradio_app.launch()
|