File size: 7,901 Bytes
089937d
434bd0b
 
b8e9f2b
 
9b636da
abcbaa7
733d2db
b8e9f2b
 
 
434bd0b
3c6ed53
 
b7d3023
 
 
ebd4cd0
 
 
 
 
15f88b7
 
 
b8e9f2b
3c6ed53
 
 
 
 
 
7a6defc
b8e9f2b
 
 
 
 
991636c
9b636da
 
 
 
 
abcbaa7
 
 
 
9b636da
abcbaa7
b8e9f2b
abcbaa7
 
 
 
 
 
 
 
 
7d48373
 
b8e9f2b
a7b1d6f
b8e9f2b
 
733d2db
 
6dbe3b3
 
 
 
089937d
b8e9f2b
 
 
733d2db
b8e9f2b
 
733d2db
0287eeb
e5129b2
733d2db
 
e5129b2
733d2db
 
b8e9f2b
 
746a838
0ed7385
746a838
 
 
 
 
 
 
6af4df0
7a6defc
 
5fb4ed3
 
0ccbb95
b7d3023
f0110ec
5fb4ed3
 
b7d3023
 
 
0ccbb95
b7d3023
 
3673e0a
8847f24
 
5fb4ed3
 
 
b7d3023
5fb4ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a6defc
5fb4ed3
 
 
 
 
 
 
 
 
 
 
 
089937d
 
 
 
 
 
7a6defc
f0110ec
 
 
 
7a6defc
f0110ec
 
 
b8e9f2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb0794
 
 
 
 
 
 
 
 
 
0376f20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cdb0794
 
15f88b7
 
 
 
cdb0794
 
 
 
0376f20
 
 
 
bd7c4ad
 
 
f0110ec
 
cdb0794
 
 
0376f20
 
 
 
 
 
 
bd7c4ad
 
 
 
38f9c3e
bd7c4ad
aea048b
bd7c4ad
 
 
 
 
 
 
38f9c3e
 
 
3f55185
 
 
 
 
bd7c4ad
 
 
cdb0794
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from fastapi import FastAPI, File, UploadFile, Form, BackgroundTasks
from pydantic import BaseModel
from typing import List
from pathlib import Path
import shutil
import tempfile
import os
import uuid

from langchain_docling import DoclingLoader
from langchain_docling.loader import ExportType

from job_samples import job_list

from ranker import rank_resume, rank_resume_multi
from embeddings import rank_jobs, rank_jobs_multi

from database import Base, engine


Base.metadata.create_all(bind=engine)


app = FastAPI()

resumes = []
jobs = [{
    "id":str(uuid.uuid4()),
    "metadata":{"source":"built-in text"},
    "page_content":x
} for x in job_list]

scoring = {}

UPLOAD_DIR = Path("uploads")
UPLOAD_DIR.mkdir(exist_ok=True)

@app.post("/upload")
async def upload_file(file: UploadFile = File(...), type: str = Form(...), task: BackgroundTasks = None):
    # print(file)
    # file_path = Path(file.filename)
    # with file_path.open("wb") as buffer:
    #     shutil.copyfileobj(file.file, buffer)

    # with tempfile.NamedTemporaryFile(delete=False, suffix=file.filename) as temp_file:
    #     # Efficiently write the uploaded file's content to the temporary file
    #     contents = await file.read()
    #     temp_file.write(contents)
            
    # temp_file_path = temp_file.name 

    suffix = os.path.splitext(file.filename)[-1] or ".pdf"
    with tempfile.NamedTemporaryFile(delete=False, suffix=suffix, dir="/tmp") as tmp:
        shutil.copyfileobj(file.file, tmp)
        tmp_path = tmp.name

    # At this point, tmp_path is a real file path in /tmp
    # Debug: check if file is valid
    size = os.path.getsize(tmp_path)
    print(f"Saved {file.filename} -> {tmp_path} ({size} bytes)")

    print("[TMP PATH]", str(tmp_path))
    
    loader = DoclingLoader(file_path="" + str(tmp_path), export_type=ExportType.MARKDOWN)
    docs = loader.load()
    # docs = docs.model_dump()
    result = docs[0].model_dump()
    result["id"] = str(uuid.uuid4())
    if type == "resume":
        resumes.append(result)
    elif type == "job":
        jobs.append(result)
    task.add_task(process_scoring)
    return {
        "code":201,
        "message":"Request was successful.",
        "data": result
    }


@app.get("/jobs")
def get_jobs():
    return {
        "code":200,
        "message":"Request was successful.",
        "data": jobs
    }


@app.get("/resumes")
def get_resumes():
    return {
        "code":200,
        "message":"Request was successful.",
        "data": resumes
    }


def process_scoring():
    # score_resume_ids = [x["resume_id"] for x in scoring]
    # score_job_ids = [x["job_id"] for x in scoring
    # score_resume_ids = [x.split("_")[0] for x in scoring.keys()]
    # score_job_ids = [x.split("_")[1] for x in scoring.keys()]
    # scoring_keys = scoring.keys()
    # scs = {"resume_ids":[], "job_ids":[]}
    for resume in resumes:
        for job in jobs:
            sc = f"{resume['id']}_{job['id']}"
            # scs.append({"resume_id"})
            # scs["resume_ids"].append(resume)
            # scs["job_ids"].append(job['id'])
            if sc not in scoring.keys():
                rank_score = process_input(job["page_content"], [resume["page_content"]])
                suggest_score = process_input_suggestion(resume["page_content"], [job["page_content"]])
                scoring[sc] = {
                    "resume_id":resume["id"],
                    "job_id":job["id"],
                    "rank_score":rank_score[0],
                    "suggestion_score":suggest_score[0]
                }
    

    # for resume in resumes:
    #     if resume["id"] not in score_resume_ids:
    #         # rank_score = process_input(job["page_content"], [resume["page_content"]])
    #         suggest_score = process_input_suggestion(resume["page_content"], [job["page_content"] for job in jobs])

    #         for i,job in enumerate(jobs):
    #             if not scoring.get(f"{resume['id']}_{job['id']}"):
    #                 scoring[f"{resume['id']}_{job['id']}"] = {}
    #             scoring[f"{resume['id']}_{job['id']}"].update({
    #                 "resume_id":resume["id"],
    #                 "job_id":job["id"],
    #                 # "rank_score":rank_score[0],
    #                 "suggestion_score":suggest_score[i]
    #             })
        
    # for job in jobs:
    #     if job["id"] not in score_job_ids:
    #         rank_score = process_input(job["page_content"], [resume["page_content"] for resume in resumes])
    #         for i,resume in enumerate(resumes):
    #             if not scoring.get(f"{resume['id']}_{job['id']}"):
    #                 scoring[f"{resume['id']}_{job['id']}"] = {}
    #             scoring[f"{resume['id']}_{job['id']}"].update({
    #                 "resume_id":resume["id"],
    #                 "job_id":job["id"],
    #                 "rank_score":rank_score[i],
    #                 # "suggestion_score":suggest_score[0]
    #             })
    
@app.get("/scoring")
async def get_scoring():
    # resume_ids = [x["id"] for x in resumes]
    # job_ids = [x["id"] for x in jobs]

    # scoring = await process_scoring()
        
    return {
        "code":200,
        "message":"Request was successful.",
        "data": list(scoring.values())
    }


# class InputResume(BaseModel):
#     content: str
    


# @app.post("/suggest/")
# async def suggestion(data: InputResume):
#     return {
#         "code":201,
#         "message":"Request was successful.",
#         "data": InputResume.model_dump_json()
#     }



# Function to wrap the existing rank_resume
def process_input(job_description, resumes):
    print("[JOB DESC]", job_description)
    print("[RESUMES]", resumes)
    resumes = [r for r in resumes if r and r.strip() != ""]  # Remove empty
    if not job_description.strip() or not resumes:
        return "Please provide both job description and at least one resume."
    
    return rank_resume(job_description, resumes)[1]


def process_input_suggestion(resume, job_descriptions):
    # print("[JOB DESC]", job_description)
    # print("[RESUMES]", resumes)
    # resumes = [r for r in resumes if r and r.strip() != ""]  # Remove empty
    # if not job_description.strip() or not resumes:
    #     return "Please provide both resume and at least one job description."

    return rank_jobs(job_descriptions, resume)[1]
    
    # results = zip(*rank_jobs(resumes, job_description))
    # formatted_output = ""
    # for i, (resume, score) in enumerate(results, 1):
    #     formatted_output += f"Job #{i}:\nScore: {score:.2f}\nJob Description Snippet: {resume[:200]}...\n\n-------\n\n"
    # return formatted_output


    
app.get("/")
def read_root():
    return {"message": "Hello, World!"}


class InputData(BaseModel):
    resumes: List[str]
    job_description: str

class InputData2(BaseModel):
    job_descriptions: List[str]
    resume: str

class InputData3(BaseModel):
    content: str
    type: str


@app.post("/rank/")
async def process_data(data: InputData):
    return dict(scores=process_input(data.job_description, data.resumes))


@app.post("/suggest/")
async def suggestion(data: InputData2):
    return {
        "scores":process_input_suggestion(data.resume, data.job_descriptions)
    }



@app.post("/add_content")
async def add_content(data: InputData3, task: BackgroundTasks):
    result = {
        "id":str(uuid.uuid4()),
        "page_content":data.content,
        "metadata":{"source":"form input"}
    }
    if data.type == "job":
        jobs.append(result)
    elif data.type == "resume":
        resumes.append(result)
        
    task.add_task(process_scoring)
    
    return {
        "code":201,
        "message":"Request was successful.",
        "data": result
    }
    # return {
    #     "scores":process_input_suggestion(data.resume, data.job_descriptions)
    # }