File size: 25,885 Bytes
4c346eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
import ast
import logging
import operator
import re
import unicodedata
from collections.abc import Iterable, Mapping, Sequence
from typing import Protocol, cast

import exmol
from pydantic import JsonValue
from rdkit import Chem, DataStructs
from rdkit.Chem import GetMolFrags, SanitizeMol  # pylint: disable=no-name-in-module
from rdkit.Chem.rdMolDescriptors import (  # pylint: disable=no-name-in-module
    CalcMolFormula,
    GetMorganFingerprintAsBitVect,
)
from rdkit.Chem.rdmolfiles import MolToSmiles  # pylint: disable=no-name-in-module
from rdkit.rdBase import BlockLogs

from ether0.clients import fetch_forward_rxn, fetch_purchasable, fetch_solubility
from ether0.data import is_reasonable_fp, is_reasonable_ring_system, mol_from_smiles
from ether0.model_prompts import extract_answer_loose, extract_thought_answer_strict
from ether0.models import RewardFunctionInfo, RewardReason

block = BlockLogs()

logger = logging.getLogger(__name__)


class RewardEvalFn(Protocol):
    def __call__(
        self,
        yhat: str,
        y: str,
        soft: bool = False,
        test: bool = False,
        metadata: dict[str, JsonValue] | None = None,
    ) -> float: ...


def formula_diff(formula1: str, formula2: str) -> float:
    """Calculate l2 norm between two molecular formulas."""
    # important = elements we care about in organic chem
    important_elements = {"C", "H", "O", "N", "F", "Cl", "Br", "P", "S"}
    pattern = re.compile(r"([A-Z][a-z]?)(\d*)")
    counts1 = dict.fromkeys(important_elements, 0)
    counts2 = dict.fromkeys(important_elements, 0)
    for m in pattern.finditer(formula1):
        element = m.group(1)
        count = int(m.group(2)) if m.group(2) else 1
        if element in important_elements:
            counts1[element] += count
    for m in pattern.finditer(formula2):
        element = m.group(1)
        count = int(m.group(2)) if m.group(2) else 1
        if element in important_elements:
            counts2[element] += count
    d2 = sum((counts1[k] - counts2[k]) ** 2 for k in important_elements)
    return d2**0.5


def format_reward(
    completions,
    reasoning: bool,
    reward: float = 1.0,
    **kwargs,  # noqa: ARG001
) -> list[float]:
    """Reward function that checks if the completion has a specific format."""
    if isinstance(completions[0], list):
        completion_contents = [completion[0]["content"] for completion in completions]
    else:
        completion_contents = completions
    # Note we check `answer is not None` since empty answer still counts as valid
    # formatting.
    return [
        reward if answer is not None else 0.0
        for answer in (
            extract_thought_answer_strict(c, reasoning)[1] for c in completion_contents
        )
    ]


SUPERSCRIPT_PATTERN = re.compile(r"\^{([\d,]+)}")
ITALICS_PATTERN = re.compile(r"{([a-zA-Z])}")
# parentheses that aren't nested or contain hyphens
# https://regex101.com/r/6c8smX/1
USELESS_PARENTHESES = re.compile(r"([-\d])[\(\[{]([A-Za-z0-9]+)[\]\)}]-")


def normalize_iupac(s: str) -> str:
    """Normalize an IUPAC name by removing special formatting and characters.

    Args:
        s: Original IUPAC name.

    Returns:
        A normalized IUPAC name without special characters.
    """
    s = s.strip().casefold()
    # replace ^{n} with ^(n)
    s = SUPERSCRIPT_PATTERN.sub(r"^(\1)", s)
    # remove italicized pattern - but don't match ^{1,5} (by avoiding matching commas)
    s = ITALICS_PATTERN.sub(r"\1", s)
    # remove garbage
    s = s.replace("$", "").replace("~", "")  # noqa: FURB184
    # remove parentheses that aren't nested or contain hyphens
    s = USELESS_PARENTHESES.sub(r"\1\2-", s)
    # ok to ignore carrots and hpyhens for comparison
    return s.replace("^", "").replace(" ", "-")  # noqa: FURB184


def normalize_unicodes(s: str) -> str:
    """Normalize all Unicode dashes/hyphens to regular hyphen.

    Args:
        s: Input string with potential Unicode characters.

    Returns:
        Unicode-normalized string.
    """
    s = unicodedata.normalize("NFKC", s)
    s = "".join("-" if unicodedata.category(c) in {"Pd", "Po"} else c for c in s)
    return s.replace("-", "")  # minus sign  # noqa: FURB184


def is_reasonable_molecule(
    mol: Chem.Mol,
    metadata: dict[str, JsonValue] | None,
    test: bool,  # noqa: ARG001
    ref_mol: Chem.Mol | None = None,
) -> bool:
    """Returns True if the molecule passes heuristics for being a reasonable molecule."""
    # always check valence
    try:
        SanitizeMol(mol)
    except Exception:
        RewardReason.INVALID_MOL.set_reason(metadata)
        return False

    # We have decided that the convention will be to check the
    # same at test time and train time.

    # determine if we have counter-ions (which is fine), but we want to
    # evaluate the largest molecule only. We only consider single molecules
    # or single molecules + a counterion as valid responses
    sorted_frags = sorted(  # sort by size
        GetMolFrags(mol, asMols=True), key=lambda m: m.GetNumAtoms(), reverse=True
    )
    if len(sorted_frags) > 2:  # noqa: PLR2004
        # not a counter-ion
        RewardReason.FAILED_COUNTERION_CHECK.set_reason(metadata)
        return False
    if len(sorted_frags) == 2:  # noqa: PLR2004
        # If 2, assume first is counter-ion, and double check it's small
        cmol = sorted_frags[1]
        if cmol.GetNumHeavyAtoms() > 5:  # noqa: PLR2004
            RewardReason.FAILED_COUNTERION_CHECK.set_reason(metadata)
            return False

    mol = sorted_frags[0]

    ring_status = is_reasonable_ring_system(mol, ref_mol)

    if not ring_status:
        RewardReason.FAILED_RING_CHECK.set_reason(metadata)
        return False

    failure = is_reasonable_fp(mol, ref_mol)
    if not failure:
        RewardReason.FAILED_REOS_CHECK.set_reason(metadata)
        return False
    return True


FULL_SMILES_KEY = "full_smiles"


def set_full_smiles(smiles: str, metadata: dict[str, JsonValue] | None) -> None:
    if metadata is not None:
        metadata[FULL_SMILES_KEY] = smiles


BAD_SMARTS_PATTERNS = [
    "[#16]-[#16]-[#16]",  # More than a thiol bond
    "[#8]~[#8]",  # Peroxides
    "[#7]-[NH2]",  # Hydrazines
    "[#7]-[NH3]",  # weird charged amine
    "[#7]~[#7]~[#7]",  # 3 or more amines
    "[NX2](=[OX1])[O;$([X2]),$([X1-])]",  # Nitrite
    "[SX2][NX2]=[OX1]",  # Thionitrite
    "[$([NX3](=[OX1])(=[OX1])[O;$([X2]),$([X1-])]),$([NX3+]([OX1-])(=[OX1])[O;$([X2]),$([X1-])])]",  # Nitrate  # noqa: E501
    "[$([NX3](=O)=O),$([NX3+](=O)[O-])][!#8]",  # Nitro
    "[NX2](=[OX1])[!#7;!#8]",  # Nitroso
    "[CX4]" + ("-[CX4]" * 6),  # Long chain of carbons (7 or more)
]


def contains_bad_substruct(mol: Chem.Mol) -> bool:
    return any(
        mol.HasSubstructMatch(Chem.MolFromSmarts(pat)) for pat in BAD_SMARTS_PATTERNS
    )


def rxn_eval(
    yhat: str,
    y: str,
    soft: bool = False,  # noqa: ARG001
    test: bool = False,  # noqa: ARG001
    metadata: dict[str, JsonValue] | None = None,  # noqa: ARG001
) -> float:
    """Returns 1.0 if strings match (case-insensitive), otherwise 0.0."""
    # some normalization for IUPAC names - shouldn't affect others

    if normalize_iupac(yhat) == normalize_iupac(y):
        return 1.0

    # If that fails (would return 0), try normalizing further
    return (
        1.0
        if normalize_unicodes(normalize_iupac(yhat))
        == normalize_unicodes(normalize_iupac(y))
        else 0.0
    )


def str_eval(
    yhat: str,
    y: str,
    soft: bool = False,  # noqa: ARG001
    test: bool = False,  # noqa: ARG001
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Returns 1.0 if strings match (case-insensitive), otherwise 0.0."""
    set_full_smiles(yhat, metadata)
    return 1.0 if normalize_iupac(yhat) == normalize_iupac(y) else 0.0


def valid_mol_eval(
    yhat: str,
    y: str,
    soft: bool = False,  # noqa: ARG001
    test: bool = False,
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Validate if yhat is a valid SMILES string, when appended to y.

    Args:
        yhat: Model-predicted SMILES string or partial completion.
        y: Base SMILES string (e.g. "O=C1CCC2=CC=C(O)C(OC)=C2C#CCC2=CC3=C4") to append
            yhat and check validity.
        test: unused
        soft: unused
        metadata: optional metadata dictionary

    Returns:
        1.0 if `y + yhat` is a valid SMILES string, 0.0 otherwise.
    """
    if not yhat:
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0

    # First attempt yhat alone (assuming full SMILES), then try y+yhat (assuming
    # partial) if that fails
    for smiles in (yhat, y + yhat):
        if not smiles.startswith(y):
            # only accept a solution containing the answer
            continue
        try:
            mol = mol_from_smiles(smiles)
        except Exception:
            logger.exception(
                f"Failed to construct molecule from SMILES string {yhat!r}."
            )
            continue
        if mol is not None:
            set_full_smiles(smiles, metadata)
            if not is_reasonable_molecule(mol, metadata, test):
                return 0.0
            return 1.0

    # Nothing worked - mark as invalid
    RewardReason.INVALID_MOL.set_reason(metadata)
    return 0.0


SMOOTH_THRESHOLD_TANIMOTO_SIMILARITY = 0.7  # close enough


def tanimoto_similarity(
    m1: Chem.Mol | None, m2: Chem.Mol | None, atom_threshold: float = 10.0
) -> float:
    """Calculate Tanimoto similarity between two molecules.

    The `atom_threshold` parameter is a relative fraction (e.g., `0.2` for 20%)
    that sets a threshold for degenerate cases when the fingerprints are similar,
    but there are many more atoms in one molecule.

    Default is 10.0, which corresponds to a 1000% difference and has no practical effect.
    """
    if m1 is None or m2 is None:
        return 0.0
    fp1 = GetMorganFingerprintAsBitVect(m1, 2)
    fp2 = GetMorganFingerprintAsBitVect(m2, 2)

    # heavy atom threshold
    atoms1 = m1.GetNumHeavyAtoms()
    atoms2 = m2.GetNumHeavyAtoms()
    if (denom := max(atoms1, atoms2)) > 0:
        # Do not apply the atom diff check if there are no heavy atoms.
        # This is always safe, since the only way to avoid
        # this block is if m1=m2=H2, which would pass anyway.
        atom_diff = abs(atoms1 - atoms2) / denom
        if atom_diff > atom_threshold:
            return 0.0
    return DataStructs.TanimotoSimilarity(fp1, fp2)


def exact_mol_match(m1: Chem.Mol, m2: Chem.Mol) -> float:
    s1 = MolToSmiles(m1, canonical=True, isomericSmiles=True)  # noqa: FURB120
    s2 = MolToSmiles(m2, canonical=True, isomericSmiles=True)  # noqa: FURB120
    return 1.0 if s1 == s2 else 0.0


def get_largest_mol(smiles: str) -> Chem.Mol | None:
    parts = smiles.split(".")
    # Filter out small fragments (removes counter-ions) and invalid SMILES
    mols = [
        mol_from_smiles(p)
        for p in parts
        if (len(p) > 3 and mol_from_smiles(p) is not None)  # noqa: PLR2004
    ]
    if not mols:
        return None
    mols_atoms = []
    for mol in mols:
        n_atoms = None if mol is None else mol.GetNumAtoms()
        if n_atoms is None:
            raise NotImplementedError(f"Didn't handle {mol=} having None atoms.")
        mols_atoms.append((mol, n_atoms))
    return max(mols_atoms, key=operator.itemgetter(1))[0]


def product_eval(
    yhat: str,
    y: str,
    soft: bool = False,
    test: bool = False,  # noqa: ARG001
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Computes the Tanimoto similarity of the largest fragments from two SMILES (if soft) or exact match (if not soft).

    Returns:
        Reward in [0, 1].
    """  # noqa: E501,W505
    m1 = get_largest_mol(yhat)
    m2 = get_largest_mol(y)

    if m1 is None:
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0
    if m2 is None:
        RewardReason.INVALID_GROUND_TRUTH.set_reason(metadata)
        logger.warning(f"Invalid ground truth molecule {y!r}.")
        return 0.0

    # don't use yhat directly since it may have multiple molecules
    set_full_smiles(MolToSmiles(m1), metadata)

    if soft:
        return tanimoto_similarity(m1, m2)

    return exact_mol_match(m1, m2)  # exact match for non-soft mode


def caption_eval(
    yhat: str,
    y: str,
    soft: bool = False,
    test: bool = False,
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Currently forwards to product_eval, but also stores Tanimoto in metadata."""
    if metadata is not None:
        m1 = get_largest_mol(yhat)
        m2 = get_largest_mol(y)
        metadata["tanimoto"] = (
            tanimoto_similarity(m1, m2) if (m1 is not None and m2 is not None) else 0.0
        )
    return product_eval(yhat, y, soft, test, metadata)


def formula_eval(
    yhat: str,
    y: str,
    soft: bool = False,
    test: bool = False,
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Check correct formula and Tanimoto similarity, giving a reward in [0, 1]."""
    set_full_smiles(yhat, metadata)
    mhat = mol_from_smiles(yhat)
    m = mol_from_smiles(y)
    if mhat is None:
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0
    if m is None:
        RewardReason.INVALID_GROUND_TRUTH.set_reason(metadata)
        logger.warning(f"Invalid ground truth molecule {y!r}.")
        return 0.0

    fhat = CalcMolFormula(mhat)
    f = CalcMolFormula(m)
    if fhat != f:
        RewardReason.WRONG_FORMULA.set_reason(metadata)
        return 0.0

    if not is_reasonable_molecule(mhat, metadata, test, ref_mol=m):
        return 0.0

    return (
        1.0
        if tanimoto_similarity(mhat, m) >= SMOOTH_THRESHOLD_TANIMOTO_SIMILARITY
        # Give partial credit if soft=True and we got the right formula
        else (0.5 if soft else 0.0)
    )


def functional_group_eval(
    yhat: str,
    y: str,
    soft: bool = False,
    test: bool = False,
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Match functional group and formula, giving a reward in [0, 1]."""
    set_full_smiles(yhat, metadata)
    mhat = mol_from_smiles(yhat)
    if mhat is None:
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0

    y_args: tuple[str, list[str]] = ast.literal_eval(y)

    formula = y_args[0]
    groups = {g.lower() for g in y_args[1]}

    fhat = CalcMolFormula(mhat)
    if fhat != formula:
        RewardReason.WRONG_FORMULA.set_reason(metadata)
        return 0.0

    groupshat: set[str] = {
        f.lower() for f in exmol.get_functional_groups(mhat, return_all=True)
    }

    if not is_reasonable_molecule(mhat, metadata, test):
        return 0.0

    return (
        1.0
        if groups <= groupshat
        # Give partial credit if soft=True and we got the right formula
        else (0.5 if soft else 0.0)
    )


def oracle_solubility_eval(
    yhat: str,
    y: str,
    soft: bool = False,  # noqa: ARG001
    test: bool = False,
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Evaluate solubility prediction using remote, giving a reward in [0, 1]."""
    set_full_smiles(yhat, metadata)
    # we only want single molecules
    if "." in yhat:
        return 0.0
    mhat = mol_from_smiles(yhat)
    if mhat is None:
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0

    y_args: tuple[str, str | list[str], float | str, str] = ast.literal_eval(y)
    constraint_type, constraint_data = y_args[:2]
    target = float(y_args[2])
    # Unused: direction = y_args[3]  # noqa: ERA001

    ref_mol: Chem.Mol | None = None

    # first check constraint
    if constraint_type == "scaffold":
        ref_mol = mol_from_smiles(cast(str, constraint_data))
        if ref_mol is None:
            raise NotImplementedError(
                f"Didn't handle when {constraint_data=} is invalid."
            )
        if not mhat.HasSubstructMatch(ref_mol):
            RewardReason.FAILED_CONSTRAINT.set_reason(metadata)
            return 0.0
    elif constraint_type == "groups":
        groups = [g.lower() for g in exmol.get_functional_groups(mhat, return_all=True)]
        if not any(group.lower() in groups for group in constraint_data):
            RewardReason.FAILED_CONSTRAINT.set_reason(metadata)
            return 0.0
    elif constraint_type == "tanimoto":
        ref_mol = mol_from_smiles(cast(str, constraint_data))
        if (
            tanimoto_similarity(mhat, ref_mol, atom_threshold=0.2)
            < SMOOTH_THRESHOLD_TANIMOTO_SIMILARITY
        ):
            RewardReason.FAILED_CONSTRAINT.set_reason(metadata)
            return 0.0
    else:
        raise ValueError(f"Unknown constraint type: {constraint_type}")

    if not is_reasonable_molecule(mhat, metadata, test, ref_mol=ref_mol):
        return 0.0

    # make sure we hit the target
    result = fetch_solubility(yhat)
    if "solubility" in result:
        solubility = result["solubility"]
        delta = solubility - target
        # hard coded to typical solubility accuracies
        # we subtract 0.01 because some questions ask for
        # 0.5 change and we don't want restatements to
        # be matches
        if abs(delta) > (0.5 - 0.01):
            RewardReason.WRONG_NUMERICAL_ANSWER.set_reason(metadata)
            return 0.0
        return 1.0
    RewardReason.INVALID_MOL.set_reason(metadata)
    return 0.0


def oracle_rxn_eval(
    yhat: str,
    y: str,
    soft: bool = False,
    test: bool = False,  # noqa: ARG001
    metadata: dict[str, JsonValue] | None = None,
) -> float:
    """Evaluate forward reaction prediction using remote, giving a reward in [0, 1]."""
    if ">" not in yhat or "." not in yhat:
        RewardReason.INVALID_RXN.set_reason(metadata)
        return 0.0

    # make sure there are not more than two angle brackets
    if yhat.count(">") > 2:  # noqa: PLR2004
        RewardReason.INVALID_RXN.set_reason(metadata)
        return 0.0

    # ok now do real check on regex after heuristic checks
    # adapted partly from https://gist.github.com/lsauer/1312860/264ae813c2bd2c27a769d261c8c6b38da34e22fb
    # https://regex101.com/r/9bdE6H/1
    # basically SMILES_THINGS>SMILES_THINGS | empty>
    if not re.match(
        r"^[^J][a-z0-9@+\-\[\]\(\)\\\/%=#$\.]{6,}>[a-z0-9@+\-\[\]\(\)\\\/%=#$\.]{0,}>",
        yhat,
        re.IGNORECASE,  # lower = aromatic, which we're fine matching
    ):
        RewardReason.INVALID_RXN.set_reason(metadata)
        return 0.0

    ymol = mol_from_smiles(y)
    if ymol is None:
        RewardReason.INVALID_GROUND_TRUTH.set_reason(metadata)
        logger.warning(f"Invalid ground truth molecule {y!r}.")
        return 0.0

    reactant_smi = yhat.split(">")[0].split(".")
    reactants = [mol_from_smiles(r) for r in reactant_smi]
    if not all(x is not None for x in reactants):
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0

    reagents = [mol_from_smiles(r) for r in yhat.split(">")[1].split(".") if r.strip()]
    if not all(x is not None for x in reagents):
        RewardReason.INVALID_MOL.set_reason(metadata)
        return 0.0

    # check products, if present, contain the desired product
    products = [mol_from_smiles(r) for r in yhat.split(">")[2].split(".") if r.strip()]
    # notice we pass if there are no products
    if products:
        if not all(x is not None for x in products):
            RewardReason.INVALID_MOL.set_reason(metadata)
            return 0.0
        if not any(exact_mol_match(m, ymol) == 1.0 for m in products):  # type: ignore[arg-type]
            RewardReason.INVALID_RXN.set_reason(metadata)
            return 0.0

    # Disallow products in the reactants or reagents
    if any(exact_mol_match(m, ymol) == 1.0 for m in (reactants + reagents)):  # type: ignore[arg-type]
        RewardReason.PRODUCT_IS_REACTANT.set_reason(metadata)
        return 0.0

    # check that the reactants are purchasable

    def is_small_so_probably_purchasable(smi: str) -> bool:
        mol = mol_from_smiles(smi)
        # Molecules with <= 4 heavy atoms are likely purchasable,
        # since they include solvents and counterions
        return mol is not None and mol.GetNumHeavyAtoms() <= 4  # noqa: PLR2004

    purchasable_results = fetch_purchasable(reactant_smi)
    if not all(
        purchasable_results.get(r, False) or is_small_so_probably_purchasable(r)
        for r in reactant_smi
    ):
        RewardReason.NOT_PURCHASABLE.set_reason(metadata)
        return 0.0

    result = fetch_forward_rxn(yhat)
    if "product" in result:
        product = result["product"]
        pmol = mol_from_smiles(product)
        if pmol is None:
            RewardReason.INVALID_MOL.set_reason(metadata)
            return 0.0
        if soft:
            return tanimoto_similarity(pmol, ymol)
        if exact_mol_match(pmol, ymol) == 1.0:
            return 1.0
        RewardReason.WRONG_PRODUCT.set_reason(metadata)
        return 0.0
    RewardReason.INVALID_RXN.set_reason(metadata)
    return 0.0


def valid_molecule_eval(
    yhat: str,
    y: str,  # noqa: ARG001
    soft: bool = False,  # noqa: ARG001
    test: bool = False,  # noqa: ARG001
    metadata: dict[str, JsonValue] | None = None,  # noqa: ARG001
) -> float:
    """Evaluate if yhat is valid molecule."""
    if not yhat:
        return 0.0
    mol = mol_from_smiles(yhat, sanitize=True)
    return float(mol is not None)


EVAL_FUNCTIONS: Mapping[str, RewardEvalFn] = {
    "str_eval": str_eval,
    "valid_mol_eval": valid_mol_eval,
    "caption_eval": caption_eval,
    "product_eval": product_eval,
    "rxn_eval": rxn_eval,
    "formula_eval": formula_eval,
    "functional_group_eval": functional_group_eval,
    "sol_eval": oracle_solubility_eval,
    "rxn_forward": oracle_rxn_eval,
    "should_not_answer_eval": str_eval,
    "should_answer_eval": valid_molecule_eval,
}


# These correspond to open-ended problems that do not have a
# unique molecule as answer.
APPLY_GOOD_MOLECULE_CHECK: set[str] = {
    "valid_mol_eval",
    "formula_eval",
    "functional_group_eval",
    "sol_eval",
}


def accuracy_reward(
    completions: Sequence[list[Mapping[str, str]]] | Sequence[str],
    solution: Iterable[str],
    reasoning: bool,
    metadata: list[dict[str, JsonValue]] | None = None,
    soft: bool = False,
    test: bool = False,
    good_molecule_bonus: float = 0.0,
    **kwargs,  # noqa: ARG001
) -> list[float]:
    """Reward function that checks if the completion is the same as the ground truth."""
    if isinstance(completions[0], list):
        messages = cast(Sequence[list[Mapping[str, str]]], completions)
        contents: Sequence[str] = [m[0]["content"] for m in messages]
    else:
        contents = cast(Sequence[str], completions)
    if soft and test:
        raise ValueError("Soft mode is not supported for test time accuracy reward.")
    rewards = []
    problem_types: list[str | None] = []

    if metadata is None:
        # Create empty metadata that we can use internal to this function
        metadata = [{} for _ in contents]
    else:
        if metadata:
            raise NotImplementedError(f"Received non-empty metadata {metadata}.")
        metadata.extend([{} for _ in contents])

    for content, info, meta in zip(contents, solution, metadata, strict=True):
        reward = 0.0
        reward_info = RewardFunctionInfo.model_validate(info)
        fxn_name, answer_info, problem_type = tuple(reward_info.model_dump().values())
        try:
            answer: str | None = (
                extract_answer_loose(content)
                if test
                else extract_thought_answer_strict(content, reasoning=reasoning)[1]
            )
            if answer is not None:
                # During test time, see if full SMILES string was given as input
                if problem_type == "valid_mol_eval" and test:
                    # If we're testing, we only allow full SMILES strings
                    reward = EVAL_FUNCTIONS[fxn_name](
                        answer, answer_info, test=test, metadata=meta
                    )
                else:
                    reward = EVAL_FUNCTIONS[fxn_name](
                        answer, answer_info, soft=soft, metadata=meta
                    )
                RewardReason.set_default_reason(reward, meta)

                if reward == 1.0 and fxn_name in APPLY_GOOD_MOLECULE_CHECK:
                    if FULL_SMILES_KEY not in meta:
                        raise ValueError(  # noqa: TRY301
                            f"Missing full SMILES key in metadata {meta}"
                            f" with reward function {fxn_name}."
                        )
                    full_smiles = cast(str, meta[FULL_SMILES_KEY])
                    mol = mol_from_smiles(full_smiles)
                    if mol is None:
                        raise ValueError(  # noqa: TRY301
                            f"Invalid full SMILES {full_smiles}"
                            f" with reward function {fxn_name}."
                        )
                    meta["is_good_molecule"] = not contains_bad_substruct(mol)
                    if meta["is_good_molecule"]:
                        reward += good_molecule_bonus

            else:
                RewardReason.FORMAT_FAILED.set_reason(meta)
            rewards.append(reward)
            problem_types.append(problem_type)
        except Exception:
            logger.exception(
                f"Unhandled exception in {fxn_name=} for {problem_type=}"
                f" with inputs {content=}, {answer_info=} {soft=}, and {test=}."
            )
            RewardReason.REWARD_FUNCTION_EXCEPTION.set_reason(meta)
            rewards.append(reward)
            problem_types.append(None)

    return rewards