File size: 25,591 Bytes
fae2f45 e4f1721 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 45daab4 c161754 0fccdcf c161754 45daab4 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 033619b fae2f45 c161754 fae2f45 c161754 fae2f45 033619b fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 2d27e8d fae2f45 2d27e8d fae2f45 c161754 fae2f45 2d27e8d fae2f45 c161754 fae2f45 c161754 fae2f45 033619b fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 033619b c161754 033619b fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 45daab4 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 033619b c161754 033619b c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 033619b c161754 fae2f45 c161754 fae2f45 c161754 fae2f45 c161754 66c976a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
import os
import gradio as gr
import argparse
import numpy as np
import torch
import einops
import copy
import math
import time
import random
import spaces
import re
import uuid
from gradio_imageslider import ImageSlider
from PIL import Image
from SUPIR.util import HWC3, upscale_image, fix_resize, convert_dtype, create_SUPIR_model, load_QF_ckpt
from huggingface_hub import hf_hub_download
from pillow_heif import register_heif_opener
register_heif_opener()
max_64_bit_int = np.iinfo(np.int32).max
hf_hub_download(repo_id="laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", filename="open_clip_pytorch_model.bin", local_dir="laion_CLIP-ViT-bigG-14-laion2B-39B-b160k")
hf_hub_download(repo_id="camenduru/SUPIR", filename="sd_xl_base_1.0_0.9vae.safetensors", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0F.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="camenduru/SUPIR", filename="SUPIR-v0Q.ckpt", local_dir="yushan777_SUPIR")
hf_hub_download(repo_id="RunDiffusion/Juggernaut-XL-Lightning", filename="Juggernaut_RunDiffusionPhoto2_Lightning_4Steps.safetensors", local_dir="RunDiffusion_Juggernaut-XL-Lightning")
parser = argparse.ArgumentParser()
parser.add_argument("--opt", type=str, default='options/SUPIR_v0.yaml')
parser.add_argument("--ip", type=str, default='127.0.0.1')
parser.add_argument("--port", type=int, default='6688')
parser.add_argument("--no_llava", action='store_true', default=True)
parser.add_argument("--use_image_slider", action='store_true', default=False)
parser.add_argument("--log_history", action='store_true', default=False)
parser.add_argument("--loading_half_params", action='store_true', default=False)
parser.add_argument("--use_tile_vae", action='store_true', default=True)
parser.add_argument("--encoder_tile_size", type=int, default=512)
parser.add_argument("--decoder_tile_size", type=int, default=64)
parser.add_argument("--load_8bit_llava", action='store_true', default=False)
args = parser.parse_args()
if torch.cuda.device_count() > 0:
SUPIR_device = 'cuda:0'
# Load SUPIR
model, default_setting = create_SUPIR_model(args.opt, SUPIR_sign='Q', load_default_setting=True)
if args.loading_half_params:
model = model.half()
if args.use_tile_vae:
model.init_tile_vae(encoder_tile_size=args.encoder_tile_size, decoder_tile_size=args.decoder_tile_size)
model = model.to(SUPIR_device)
model.first_stage_model.denoise_encoder_s1 = copy.deepcopy(model.first_stage_model.denoise_encoder)
model.current_model = 'v0-Q'
ckpt_Q, ckpt_F = load_QF_ckpt(args.opt)
def check_upload(input_image):
if input_image is None:
raise gr.Error("Please provide an image to restore.")
return gr.update(visible=True)
def process_uploaded_image(image_path):
image = Image.open(image_path)
width, height = image.size
max_dim = max(width, height)
if max_dim > 1024:
if width > height:
new_width = 1024
new_height = int((1024 / width) * height)
else:
new_height = 1024
new_width = int((1024 / height) * width)
image = image.resize((new_width, new_height), Image.ANTIALIAS)
image.save(image_path)
return image_path
def update_seed(is_randomize_seed, seed):
if is_randomize_seed:
return random.randint(0, max_64_bit_int)
return seed
def reset():
return [
None, # input_image
"", # prompt
'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore detailing, hyper sharpness, perfect without deformations.', # a_prompt
'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, worst quality, low quality, frames, watermark, signature, jpeg artifacts, deformed, lowres, over-smooth', # n_prompt
1, # num_samples
1024, # min_size
1, # downscale
2, # upscale
default_setting.edm_steps if torch.cuda.device_count() > 0 else 1, # edm_steps
-1.0, # s_stage1
1.0, # s_stage2
default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, # s_cfg
random.randint(0, max_64_bit_int), # seed
5, # s_churn
1.003, # s_noise
'Wavelet', # color_fix_type
'fp32', # diff_dtype
'fp32', # ae_dtype
1.0, # gamma_correction
True, # linear_CFG
False, # linear_s_stage2
default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0, # spt_linear_CFG
0.0, # spt_linear_s_stage2
'v0-Q', # model_select
4 # allocation
]
def check(input_image):
if input_image is None:
raise gr.Error("Please provide an image to restore.")
def stage2_process(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
allocation
):
try:
return restore_in_Xmin(
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
allocation
)
except Exception as e:
print(f"Exception occurred: {str(e)}")
raise e
def restore_in_Xmin(
input_image_path,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
allocation
):
print("Starting image restoration process...")
input_format = re.sub(r"^.*\.([^\.]+)$", r"\1", input_image_path)
if input_format.lower() not in ['png', 'webp', 'jpg', 'jpeg', 'gif', 'bmp', 'heic']:
gr.Warning('Invalid image format. Please use a supported image format.')
return None, None, None
if prompt is None:
prompt = ""
if a_prompt is None:
a_prompt = ""
if n_prompt is None:
n_prompt = ""
if prompt != "" and a_prompt != "":
a_prompt = prompt + ", " + a_prompt
else:
a_prompt = prompt + a_prompt
print("Final prompt: " + str(a_prompt))
denoise_image = np.array(Image.open(input_image_path))
if downscale > 1:
input_height, input_width, input_channel = denoise_image.shape
denoise_image = np.array(Image.fromarray(denoise_image).resize((input_width // downscale, input_height // downscale), Image.LANCZOS))
denoise_image = HWC3(denoise_image)
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return [input_image_path, denoise_image], gr.update(value="GPU not available."), gr.update(visible=True)
if model_select != model.current_model:
print('Loading model: ' + model_select)
if model_select == 'v0-Q':
model.load_state_dict(ckpt_Q, strict=False)
elif model_select == 'v0-F':
model.load_state_dict(ckpt_F, strict=False)
model.current_model = model_select
model.ae_dtype = convert_dtype(ae_dtype)
model.model.dtype = convert_dtype(diff_dtype)
# Allocation
allocation_functions = {
1: restore_in_1min,
2: restore_in_2min,
3: restore_in_3min,
4: restore_in_4min,
5: restore_in_5min,
6: restore_in_6min,
7: restore_in_7min,
8: restore_in_8min,
9: restore_in_9min,
10: restore_in_10min,
}
restore_function = allocation_functions.get(allocation, restore_in_4min)
return restore_function(
input_image_path, prompt, a_prompt, n_prompt, num_samples, min_size, downscale, upscale,
edm_steps, s_stage1, s_stage2, s_cfg, seed, s_churn, s_noise, color_fix_type,
diff_dtype, ae_dtype, gamma_correction, linear_CFG, linear_s_stage2, spt_linear_CFG,
spt_linear_s_stage2, model_select, allocation
)
@spaces.GPU(duration=59)
def restore_in_1min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=119)
def restore_in_2min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=179)
def restore_in_3min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=239)
def restore_in_4min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=299)
def restore_in_5min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=359)
def restore_in_6min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=419)
def restore_in_7min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=479)
def restore_in_8min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=539)
def restore_in_9min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
@spaces.GPU(duration=599)
def restore_in_10min(*args, **kwargs):
return restore_on_gpu(*args, **kwargs)
def restore_on_gpu(
input_image_path,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
allocation
):
start = time.time()
print('Starting GPU restoration...')
torch.cuda.set_device(SUPIR_device)
with torch.no_grad():
# Convert input image to NumPy array and ensure it has 3 channels
input_image = HWC3(np.array(Image.open(input_image_path)))
input_image = upscale_image(input_image, upscale, unit_resolution=32, min_size=min_size)
LQ = input_image / 255.0
LQ = np.power(LQ, gamma_correction)
LQ *= 255.0
LQ = LQ.round().clip(0, 255).astype(np.uint8)
LQ = LQ / 255 * 2 - 1
LQ = torch.tensor(LQ, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).to(SUPIR_device)[:, :3, :, :]
captions = ['']
samples = model.batchify_sample(
LQ, captions, num_steps=edm_steps, restoration_scale=s_stage1, s_churn=s_churn,
s_noise=s_noise, cfg_scale=s_cfg, control_scale=s_stage2, seed=seed,
num_samples=num_samples, p_p=a_prompt, n_p=n_prompt, color_fix_type=color_fix_type,
use_linear_CFG=linear_CFG, use_linear_control_scale=linear_s_stage2,
cfg_scale_start=spt_linear_CFG, control_scale_start=spt_linear_s_stage2
)
x_samples = (einops.rearrange(samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().round().clip(
0, 255).astype(np.uint8)
results = [x_samples[i] for i in range(num_samples)]
torch.cuda.empty_cache()
input_height, input_width, input_channel = input_image.shape
result_height, result_width, result_channel = results[0].shape
print('Restoration completed.')
end = time.time()
secondes = int(end - start)
minutes = math.floor(secondes / 60)
secondes = secondes - (minutes * 60)
hours = math.floor(minutes / 60)
minutes = minutes - (hours * 60)
information = ("Start the process again if you want a different result. " if seed is not None else "") + \
"The image has been enhanced successfully."
# Save the result image to a temporary file for downloading
result_image = Image.fromarray(results[0])
result_image_path = f"result_{uuid.uuid4().hex}.png"
result_image.save(result_image_path)
# Update the result slider with the before and after images
return [input_image_path, result_image_path], gr.update(value=information, visible=True), gr.update(visible=True)
def load_and_reset(param_setting):
print('Resetting parameters...')
if torch.cuda.device_count() == 0:
gr.Warning('Set this space to GPU config to make it work.')
return None, None, None, None, None, None, None, None, None, None, None, None, None
edm_steps = default_setting.edm_steps
s_stage2 = 1.0
s_stage1 = -1.0
s_churn = 5
s_noise = 1.003
a_prompt = 'Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, hyper detailed photo - ' \
'realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, skin pore ' \
'detailing, hyper sharpness, perfect without deformations.'
n_prompt = 'painting, oil painting, illustration, drawing, art, sketch, anime, cartoon, CG Style, ' \
'3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, ' \
'signature, jpeg artifacts, deformed, lowres, over-smooth'
color_fix_type = 'Wavelet'
spt_linear_s_stage2 = 0.0
linear_s_stage2 = False
linear_CFG = True
if param_setting == "Quality":
s_cfg = default_setting.s_cfg_Quality
spt_linear_CFG = default_setting.spt_linear_CFG_Quality
model_select = "v0-Q"
elif param_setting == "Fidelity":
s_cfg = default_setting.s_cfg_Fidelity
spt_linear_CFG = default_setting.spt_linear_CFG_Fidelity
model_select = "v0-F"
else:
raise NotImplementedError
gr.Info('The parameters are reset.')
print('Parameters reset completed.')
return edm_steps, s_cfg, s_stage2, s_stage1, s_churn, s_noise, a_prompt, n_prompt, color_fix_type, linear_CFG, \
linear_s_stage2, spt_linear_CFG, spt_linear_s_stage2, model_select
def log_information(result_slider):
print('Logging information...')
if result_slider is not None:
print(result_slider)
title_html = """
<h1><center>Maree's Magical Photo Tool</center></h1>
"""
# Gradio interface
with gr.Blocks() as interface:
if torch.cuda.device_count() == 0:
with gr.Row():
gr.HTML("""
<p style="background-color: red;"><big><big><big><b>⚠️To use this tool, set a GPU with sufficient VRAM.</b></big></big></big></p>
""")
gr.HTML(title_html)
input_image = gr.Image(label="Upload your photo", show_label=True, type="filepath", height=400, elem_id="image-input")
with gr.Group():
prompt = gr.Textbox(
label="Describe your photo",
info="Tell me about your photo so I can make it better.",
value="",
placeholder="Type a description...",
lines=3
)
upscale = gr.Radio(
[["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4]],
label="Upscale factor",
info="Choose how much to enlarge the photo",
value=2,
interactive=True
)
allocation = gr.Radio(
[["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5]],
label="GPU allocation time (for Jon)",
info="You can ignore this setting",
value=4,
interactive=True
)
gamma_correction = gr.Number(value=1.0, visible=False) # Hidden component with default value 1.0
with gr.Accordion("Advanced options", open=False):
a_prompt = gr.Textbox(
label="Additional image description",
info="Completes the main image description",
value='Cinematic, High Contrast, highly detailed, taken using a Canon EOS R '
'camera, hyper detailed photo - realistic maximum detail, 32k, Color '
'Grading, ultra HD, extreme meticulous detailing, skin pore detailing, '
'hyper sharpness, perfect without deformations.',
lines=3
)
n_prompt = gr.Textbox(
label="Negative image description",
info="Disambiguate by listing what the image does NOT represent",
value='painting, oil painting, illustration, drawing, art, sketch, anime, '
'cartoon, CG Style, 3D render, unreal engine, blurring, aliasing, unsharp, weird textures, ugly, dirty, messy, '
'worst quality, low quality, frames, watermark, signature, jpeg artifacts, '
'deformed, lowres, over-smooth',
lines=3
)
edm_steps = gr.Slider(
label="Steps",
info="Lower=faster, higher=more details",
minimum=1,
maximum=200,
value=default_setting.edm_steps if torch.cuda.device_count() > 0 else 1,
step=1
)
num_samples = gr.Slider(
label="Num Samples",
info="Number of generated results",
minimum=1,
maximum=4 if not args.use_image_slider else 1,
value=1,
step=1
)
min_size = gr.Slider(
label="Minimum size",
info="Minimum height, minimum width of the result",
minimum=32,
maximum=4096,
value=1024,
step=32
)
downscale = gr.Radio(
[["/1", 1], ["/2", 2], ["/3", 3], ["/4", 4]],
label="Pre-downscale factor",
info="Reducing blurred image reduces the process time",
value=1,
interactive=True
)
with gr.Row():
with gr.Column():
model_select = gr.Radio(
[["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]],
label="Model Selection",
info="Pretrained model",
value="v0-Q",
interactive=True
)
with gr.Column():
color_fix_type = gr.Radio(
[["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]],
label="Color-Fix Type",
info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts",
value="AdaIn",
interactive=True
)
s_cfg = gr.Slider(
label="Text Guidance Scale",
info="Lower=follow the image, higher=follow the prompt",
minimum=1.0,
maximum=15.0,
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0,
step=0.1
)
s_stage2 = gr.Slider(
label="Restoring Guidance Strength",
minimum=0.,
maximum=1.,
value=1.,
step=0.05
)
s_stage1 = gr.Slider(
label="Pre-denoising Guidance Strength",
minimum=-1.0,
maximum=6.0,
value=-1.0,
step=1.0
)
s_churn = gr.Slider(
label="S-Churn",
minimum=0,
maximum=40,
value=5,
step=1
)
s_noise = gr.Slider(
label="S-Noise",
minimum=1.0,
maximum=1.1,
value=1.003,
step=0.001
)
with gr.Row():
with gr.Column():
linear_CFG = gr.Checkbox(label="Linear CFG", value=True)
spt_linear_CFG = gr.Slider(
label="CFG Start",
minimum=1.0,
maximum=9.0,
value=default_setting.spt_linear_CFG_Quality if torch.cuda.device_count() > 0 else 1.0,
step=0.5
)
with gr.Column():
linear_s_stage2 = gr.Checkbox(label="Linear Restoring Guidance", value=False)
spt_linear_s_stage2 = gr.Slider(
label="Guidance Start",
minimum=0.,
maximum=1.,
value=0.,
step=0.05
)
with gr.Column():
diff_dtype = gr.Radio(
[["fp32 (precision)", "fp32"], ["fp16 (medium)", "fp16"], ["bf16 (speed)", "bf16"]],
label="Diffusion Data Type",
value="fp32",
interactive=True
)
with gr.Column():
ae_dtype = gr.Radio(
[["fp32 (precision)", "fp32"], ["bf16 (speed)", "bf16"]],
label="Auto-Encoder Data Type",
value="fp32",
interactive=True
)
randomize_seed = gr.Checkbox(
label="\U0001F3B2 Randomize seed",
value=True,
info="If checked, result is always different"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=max_64_bit_int,
step=1,
randomize=True
)
with gr.Group():
param_setting = gr.Radio(
["Quality", "Fidelity"],
interactive=True,
label="Presetting",
value="Quality"
)
restart_button = gr.Button(value="Apply presetting")
with gr.Column():
diffusion_button = gr.Button(
value="🚀 Enhance Photo",
variant="primary",
elem_id="process_button"
)
reset_btn = gr.Button(
value="🧹 Reset",
variant="stop",
elem_id="reset_button",
visible=False
)
restore_information = gr.HTML(
value="Start the process again if you want a different result.",
visible=False
)
result_slider = ImageSlider(
label='Result',
show_label=False,
interactive=False,
elem_id="slider1",
show_download_button=True # Enable the download button
)
input_image.upload(
fn=process_uploaded_image,
inputs=input_image,
outputs=input_image,
queue=False
)
input_image.upload(
fn=check_upload,
inputs=input_image,
outputs=[],
queue=False,
show_progress=False
)
diffusion_button.click(
fn=update_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
queue=False,
show_progress=False
).then(
fn=check,
inputs=[input_image],
outputs=[],
queue=False,
show_progress=False
).success(
fn=stage2_process,
inputs=[
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction, # Use the hidden gamma_correction component
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
allocation
],
outputs=[
result_slider,
restore_information,
reset_btn
]
).success(
fn=log_information,
inputs=[result_slider],
outputs=[],
queue=False,
show_progress=False
)
restart_button.click(
fn=load_and_reset,
inputs=[param_setting],
outputs=[
edm_steps,
s_cfg,
s_stage2,
s_stage1,
s_churn,
s_noise,
a_prompt,
n_prompt,
color_fix_type,
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select
]
)
reset_btn.click(
fn=reset,
inputs=[],
outputs=[
input_image,
prompt,
a_prompt,
n_prompt,
num_samples,
min_size,
downscale,
upscale,
edm_steps,
s_stage1,
s_stage2,
s_cfg,
seed,
s_churn,
s_noise,
color_fix_type,
diff_dtype,
ae_dtype,
gamma_correction, # Use the hidden gamma_correction component
linear_CFG,
linear_s_stage2,
spt_linear_CFG,
spt_linear_s_stage2,
model_select,
allocation
],
queue=False,
show_progress=False
)
interface.queue(10).launch() |