File size: 7,162 Bytes
95f0e22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os
import torch
import numpy as np
from PIL import Image
import torch.nn.functional as F
import json

# Import your model components
from models.loader import ModelLoader
from models.uncertainty import BlockUncertaintyTracker

class BathymetrySuperResolution:
    """
    Bathymetry super-resolution model with uncertainty estimation
    """
    def __init__(self, model_type="vqvae", checkpoint_path=None, config_path=None):
        """
        Initialize the super-resolution model with uncertainty awareness
        
        Args:
            model_type: Type of model ('srcnn', 'gan', or 'vqvae')
            checkpoint_path: Path to model checkpoint
            config_path: Path to configuration file
        """
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        
        # Load config if provided
        if config_path is not None and os.path.exists(config_path):
            with open(config_path, 'r') as f:
                self.config = json.load(f)
        else:
            # Default configuration
            self.config = {
                "model_type": model_type,
                "model_config": {
                    "in_channels": 1,
                    "hidden_dims": [32, 64, 128, 256],
                    "num_embeddings": 512,
                    "embedding_dim": 256,
                    "block_size": 4
                },
                "normalization": {
                    "mean": -3911.3894,
                    "std": 1172.8374,
                    "min": 0.0,
                    "max": 1.0
                }
            }
        
        # Initialize model loader
        self.model_loader = ModelLoader()
        
        # Load model
        if checkpoint_path is not None and os.path.exists(checkpoint_path):
            self.model = self.model_loader.load_model(
                self.config['model_type'],
                checkpoint_path,
                config_overrides=self.config.get('model_config', {})
            )
        else:
            raise ValueError("Checkpoint path not provided or invalid")
        
        # Ensure model is in eval mode
        self.model.eval()
        
        # Load normalization parameters
        self.mean = self.config['normalization']['mean']
        self.std = self.config['normalization']['std']
        self.min_val = self.config['normalization']['min']
        self.max_val = self.config['normalization']['max']
    
    def preprocess(self, data):
        """
        Preprocess input data for the model
        
        Args:
            data: Input array/image (can be numpy array, PIL Image, or tensor)
            
        Returns:
            Preprocessed tensor
        """
        # Convert PIL Image to numpy if needed
        if isinstance(data, Image.Image):
            data = np.array(data)
        
        # Convert numpy to tensor if needed
        if isinstance(data, np.ndarray):
            tensor = torch.from_numpy(data).float()
        else:
            tensor = data.float()
        
        # Add batch and channel dimensions if needed
        if len(tensor.shape) == 2:
            tensor = tensor.unsqueeze(0).unsqueeze(0)
        elif len(tensor.shape) == 3:
            tensor = tensor.unsqueeze(0)
        
        # Apply normalization
        tensor = (tensor - self.mean) / (self.std + 1e-8)
        tensor = (tensor - tensor.min()) / (tensor.max() - tensor.min() + 1e-8)
        
        # Resize if needed (to 32x32)
        if tensor.shape[-1] != 32 or tensor.shape[-2] != 32:
            tensor = F.interpolate(
                tensor,
                size=(32, 32),
                mode='bicubic',
                align_corners=False
            )
        
        return tensor.to(self.device)
    
    def denormalize(self, tensor):
        """
        Denormalize output tensor
        
        Args:
            tensor: Output tensor from model
            
        Returns:
            Denormalized tensor in original data range
        """
        # Scale from [0,1] back to original range
        tensor = tensor * (self.max_val - self.min_val) + self.min_val
        
        # Restore original scale
        tensor = tensor * self.std + self.mean
        
        return tensor
    
    def predict(self, data, with_uncertainty=True, confidence_level=0.95):
        """
        Generate super-resolution output with uncertainty bounds
        
        Args:
            data: Input data (can be numpy array, PIL Image, or tensor)
            with_uncertainty: Whether to include uncertainty bounds
            confidence_level: Confidence level for uncertainty bounds
            
        Returns:
            Tuple of (prediction, lower_bound, upper_bound) if with_uncertainty=True
            or just prediction otherwise
        """
        # Preprocess input
        input_tensor = self.preprocess(data)
        
        with torch.no_grad():
            # Run model inference
            if with_uncertainty and hasattr(self.model, 'predict_with_uncertainty'):
                prediction, lower_bound, upper_bound = self.model.predict_with_uncertainty(
                    input_tensor, confidence_level
                )
                
                # Denormalize outputs
                prediction = self.denormalize(prediction)
                lower_bound = self.denormalize(lower_bound) if lower_bound is not None else None
                upper_bound = self.denormalize(upper_bound) if upper_bound is not None else None
                
                # Convert to numpy
                prediction = prediction.cpu().numpy()
                lower_bound = lower_bound.cpu().numpy() if lower_bound is not None else None
                upper_bound = upper_bound.cpu().numpy() if upper_bound is not None else None
                
                return prediction, lower_bound, upper_bound
            else:
                # Standard inference
                prediction = self.model(input_tensor)
                
                # Denormalize
                prediction = self.denormalize(prediction)
                
                # Convert to numpy
                prediction = prediction.cpu().numpy()
                
                return prediction
    
    def load_npy(self, file_path):
        """
        Load bathymetry data from numpy file
        
        Args:
            file_path: Path to .npy file
            
        Returns:
            Numpy array containing bathymetry data
        """
        try:
            return np.load(file_path)
        except Exception as e:
            raise ValueError(f"Error loading numpy file: {str(e)}")
    
    @staticmethod
    def get_uncertainty_width(lower_bound, upper_bound):
        """
        Calculate uncertainty width (difference between upper and lower bounds)
        
        Args:
            lower_bound: Lower uncertainty bound
            upper_bound: Upper uncertainty bound
            
        Returns:
            Uncertainty width
        """
        if lower_bound is None or upper_bound is None:
            return None
        
        return np.mean(upper_bound - lower_bound)