Spaces:
Configuration error
Configuration error
File size: 8,244 Bytes
2a3a041 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import numpy as np
from args import get_parser
import pickle
import os
from torchvision import transforms
from build_vocab import Vocabulary
from model import get_model
from tqdm import tqdm
from data_loader import get_loader
import json
import sys
from model import mask_from_eos
import random
from utils.metrics import softIoU, update_error_types, compute_metrics
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
map_loc = None if torch.cuda.is_available() else 'cpu'
def compute_score(sampled_ids):
if 1 in sampled_ids:
cut = np.where(sampled_ids == 1)[0][0]
else:
cut = -1
sampled_ids = sampled_ids[0:cut]
score = float(len(set(sampled_ids))) / float(len(sampled_ids))
return score
def label2onehot(labels, pad_value):
# input labels to one hot vector
inp_ = torch.unsqueeze(labels, 2)
one_hot = torch.FloatTensor(labels.size(0), labels.size(1), pad_value + 1).zero_().to(device)
one_hot.scatter_(2, inp_, 1)
one_hot, _ = one_hot.max(dim=1)
# remove pad and eos position
one_hot = one_hot[:, 1:-1]
one_hot[:, 0] = 0
return one_hot
def main(args):
where_to_save = os.path.join(args.save_dir, args.project_name, args.model_name)
checkpoints_dir = os.path.join(where_to_save, 'checkpoints')
logs_dir = os.path.join(where_to_save, 'logs')
if not args.log_term:
print ("Eval logs will be saved to:", os.path.join(logs_dir, 'eval.log'))
sys.stdout = open(os.path.join(logs_dir, 'eval.log'), 'w')
sys.stderr = open(os.path.join(logs_dir, 'eval.err'), 'w')
vars_to_replace = ['greedy', 'recipe_only', 'ingrs_only', 'temperature', 'batch_size', 'maxseqlen',
'get_perplexity', 'use_true_ingrs', 'eval_split', 'save_dir', 'aux_data_dir',
'recipe1m_dir', 'project_name', 'use_lmdb', 'beam']
store_dict = {}
for var in vars_to_replace:
store_dict[var] = getattr(args, var)
args = pickle.load(open(os.path.join(checkpoints_dir, 'args.pkl'), 'rb'))
for var in vars_to_replace:
setattr(args, var, store_dict[var])
print (args)
transforms_list = []
transforms_list.append(transforms.Resize((args.crop_size)))
transforms_list.append(transforms.CenterCrop(args.crop_size))
transforms_list.append(transforms.ToTensor())
transforms_list.append(transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225)))
# Image preprocessing
transform = transforms.Compose(transforms_list)
# data loader
data_dir = args.recipe1m_dir
data_loader, dataset = get_loader(data_dir, args.aux_data_dir, args.eval_split,
args.maxseqlen, args.maxnuminstrs, args.maxnumlabels,
args.maxnumims, transform, args.batch_size,
shuffle=False, num_workers=args.num_workers,
drop_last=False, max_num_samples=-1,
use_lmdb=args.use_lmdb, suff=args.suff)
ingr_vocab_size = dataset.get_ingrs_vocab_size()
instrs_vocab_size = dataset.get_instrs_vocab_size()
args.numgens = 1
# Build the model
model = get_model(args, ingr_vocab_size, instrs_vocab_size)
model_path = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints', 'modelbest.ckpt')
# overwrite flags for inference
model.recipe_only = args.recipe_only
model.ingrs_only = args.ingrs_only
# Load the trained model parameters
model.load_state_dict(torch.load(model_path, map_location=map_loc))
model.eval()
model = model.to(device)
results_dict = {'recipes': {}, 'ingrs': {}, 'ingr_iou': {}}
captions = {}
iou = []
error_types = {'tp_i': 0, 'fp_i': 0, 'fn_i': 0, 'tn_i': 0, 'tp_all': 0, 'fp_all': 0, 'fn_all': 0}
perplexity_list = []
n_rep, th = 0, 0.3
for i, (img_inputs, true_caps_batch, ingr_gt, imgid, impath) in tqdm(enumerate(data_loader)):
ingr_gt = ingr_gt.to(device)
true_caps_batch = true_caps_batch.to(device)
true_caps_shift = true_caps_batch.clone()[:, 1:].contiguous()
img_inputs = img_inputs.to(device)
true_ingrs = ingr_gt if args.use_true_ingrs else None
for gens in range(args.numgens):
with torch.no_grad():
if args.get_perplexity:
losses = model(img_inputs, true_caps_batch, ingr_gt, keep_cnn_gradients=False)
recipe_loss = losses['recipe_loss']
recipe_loss = recipe_loss.view(true_caps_shift.size())
non_pad_mask = true_caps_shift.ne(instrs_vocab_size - 1).float()
recipe_loss = torch.sum(recipe_loss*non_pad_mask, dim=-1) / torch.sum(non_pad_mask, dim=-1)
perplexity = torch.exp(recipe_loss)
perplexity = perplexity.detach().cpu().numpy().tolist()
perplexity_list.extend(perplexity)
else:
outputs = model.sample(img_inputs, args.greedy, args.temperature, args.beam, true_ingrs)
if not args.recipe_only:
fake_ingrs = outputs['ingr_ids']
pred_one_hot = label2onehot(fake_ingrs, ingr_vocab_size - 1)
target_one_hot = label2onehot(ingr_gt, ingr_vocab_size - 1)
iou_item = torch.mean(softIoU(pred_one_hot, target_one_hot)).item()
iou.append(iou_item)
update_error_types(error_types, pred_one_hot, target_one_hot)
fake_ingrs = fake_ingrs.detach().cpu().numpy()
for ingr_idx, fake_ingr in enumerate(fake_ingrs):
iou_item = softIoU(pred_one_hot[ingr_idx].unsqueeze(0),
target_one_hot[ingr_idx].unsqueeze(0)).item()
results_dict['ingrs'][imgid[ingr_idx]] = []
results_dict['ingrs'][imgid[ingr_idx]].append(fake_ingr)
results_dict['ingr_iou'][imgid[ingr_idx]] = iou_item
if not args.ingrs_only:
sampled_ids_batch = outputs['recipe_ids']
sampled_ids_batch = sampled_ids_batch.cpu().detach().numpy()
for j, sampled_ids in enumerate(sampled_ids_batch):
score = compute_score(sampled_ids)
if score < th:
n_rep += 1
if imgid[j] not in captions.keys():
results_dict['recipes'][imgid[j]] = []
results_dict['recipes'][imgid[j]].append(sampled_ids)
if args.get_perplexity:
print (len(perplexity_list))
print (np.mean(perplexity_list))
else:
if not args.recipe_only:
ret_metrics = {'accuracy': [], 'f1': [], 'jaccard': [], 'f1_ingredients': []}
compute_metrics(ret_metrics, error_types, ['accuracy', 'f1', 'jaccard', 'f1_ingredients'],
eps=1e-10,
weights=None)
for k, v in ret_metrics.items():
print (k, np.mean(v))
if args.greedy:
suff = 'greedy'
else:
if args.beam != -1:
suff = 'beam_'+str(args.beam)
else:
suff = 'temp_' + str(args.temperature)
results_file = os.path.join(args.save_dir, args.project_name, args.model_name, 'checkpoints',
args.eval_split + '_' + suff + '_gencaps.pkl')
print (results_file)
pickle.dump(results_dict, open(results_file, 'wb'))
print ("Number of samples with excessive repetitions:", n_rep)
if __name__ == '__main__':
args = get_parser()
torch.manual_seed(1234)
torch.cuda.manual_seed(1234)
random.seed(1234)
np.random.seed(1234)
main(args)
|