Spaces:
Runtime error
Runtime error
File size: 9,535 Bytes
9b86185 931341e 9b86185 931341e c9bf0bf 9b86185 0934670 9b86185 0192256 9b86185 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
import gradio as gr
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim
import kornia.augmentation as K
from CLIP import clip
from torchvision import transforms
from PIL import Image
import numpy as np
import math
from matplotlib import pyplot as plt
from fastprogress.fastprogress import master_bar, progress_bar
from IPython.display import HTML
from base64 import b64encode
# Definitions
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
def sinc(x):
return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
def lanczos(x, a):
cond = torch.logical_and(-a < x, x < a)
out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
return out / out.sum()
def ramp(ratio, width):
n = math.ceil(width / ratio + 1)
out = torch.empty([n])
cur = 0
for i in range(out.shape[0]):
out[i] = cur
cur += ratio
return torch.cat([-out[1:].flip([0]), out])[1:-1]
class Prompt(nn.Module):
def __init__(self, embed, weight=1., stop=float('-inf')):
super().__init__()
self.register_buffer('embed', embed)
self.register_buffer('weight', torch.as_tensor(weight))
self.register_buffer('stop', torch.as_tensor(stop))
def forward(self, input):
input_normed = F.normalize(input.unsqueeze(1), dim=2)
embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
dists = dists * self.weight.sign()
return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()
class MakeCutouts(nn.Module):
def __init__(self, cut_size, cutn, cut_pow=1.):
super().__init__()
self.cut_size = cut_size
self.cutn = cutn
self.cut_pow = cut_pow
self.augs = nn.Sequential(
K.RandomHorizontalFlip(p=0.5),
K.RandomSharpness(0.3,p=0.4),
K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
K.RandomPerspective(0.2,p=0.4),
K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
self.noise_fac = 0.1
def forward(self, input):
sideY, sideX = input.shape[2:4]
max_size = min(sideX, sideY)
min_size = min(sideX, sideY, self.cut_size)
cutouts = []
for _ in range(self.cutn):
size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
offsetx = torch.randint(0, sideX - size + 1, ())
offsety = torch.randint(0, sideY - size + 1, ())
cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
batch = self.augs(torch.cat(cutouts, dim=0))
if self.noise_fac:
facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
batch = batch + facs * torch.randn_like(batch)
return batch
def resample(input, size, align_corners=True):
n, c, h, w = input.shape
dh, dw = size
input = input.view([n * c, 1, h, w])
if dh < h:
kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
pad_h = (kernel_h.shape[0] - 1) // 2
input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
input = F.conv2d(input, kernel_h[None, None, :, None])
if dw < w:
kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
pad_w = (kernel_w.shape[0] - 1) // 2
input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
input = F.conv2d(input, kernel_w[None, None, None, :])
input = input.view([n, c, h, w])
return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)
class ReplaceGrad(torch.autograd.Function):
@staticmethod
def forward(ctx, x_forward, x_backward):
ctx.shape = x_backward.shape
return x_forward
@staticmethod
def backward(ctx, grad_in):
return None, grad_in.sum_to_size(ctx.shape)
replace_grad = ReplaceGrad.apply
# Set up CLIP
perceptor = clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
std=[0.26862954, 0.26130258, 0.27577711])
cut_size = perceptor.visual.input_resolution
cutn=64
cut_pow=1
make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)
# ImStack
class ImStack(nn.Module):
""" This class represents an image as a series of stacked arrays, where each is 1/2
the resolution of the next. This is useful eg when trying to create an image to minimise
some loss - parameters in the early (small) layers can have an affect on the overall
structure and shapes while those in later layers act as residuals and fill in fine detail.
"""
def __init__(self, n_layers=3, base_size=32, scale=2,
init_image=None, out_size=256, decay=0.7):
"""Constructs the Image Stack
Args:
TODO
"""
super().__init__()
self.n_layers = n_layers
self.base_size = base_size
self.sig = nn.Sigmoid()
self.layers = []
for i in range(n_layers):
side = base_size * (scale**i)
tim = torch.randn((3, side, side)).to(device)*(decay**i)
self.layers.append(tim)
self.scalers = [nn.Upsample(scale_factor=out_size/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
self.preview_scalers = [nn.Upsample(scale_factor=224/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
if init_image != None: # Given a PIL image, decompose it into a stack
downscalers = [nn.Upsample(scale_factor=(l.shape[1]/out_size), mode='bilinear', align_corners=False) for l in self.layers]
final_side = base_size * (scale ** n_layers)
im = torch.tensor(np.array(init_image.resize((out_size, out_size)))/255).clip(1e-03, 1-1e-3) # Between 0 and 1 (non-inclusive)
im = im.permute(2, 0, 1).unsqueeze(0).to(device) # torch.log(im/(1-im))
for i in range(n_layers):self.layers[i] *= 0 # Sero out the layers
for i in range(n_layers):
side = base_size * (scale**i)
out = self.forward()
residual = (torch.logit(im) - torch.logit(out))
Image.fromarray((torch.logit(residual).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)).save(f'residual{i}.png')
self.layers[i] = downscalers[i](residual).squeeze()
for l in self.layers: l.requires_grad = True
def forward(self):
im = self.scalers[0](self.layers[0].unsqueeze(0))
for i in range(1, self.n_layers):
im += self.scalers[i](self.layers[i].unsqueeze(0))
return self.sig(im)
def preview(self, n_preview=2):
im = self.preview_scalers[0](self.layers[0].unsqueeze(0))
for i in range(1, n_preview):
im += self.preview_scalers[i](self.layers[i].unsqueeze(0))
return self.sig(im)
def to_pil(self):
return Image.fromarray((self.forward().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))
def preview_pil(self):
return Image.fromarray((self.preview().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))
def save(self, fn):
self.to_pil().save(fn)
def plot_layers(self):
fig, axs = plt.subplots(1, self.n_layers, figsize=(15, 5))
for i in range(self.n_layers):
im = (self.sig(self.layers[i].unsqueeze(0)).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)
axs[i].imshow(im)
def generate(text, n_iter):
lr=0.25 #@param
# init_image=None #@param
weight_decay=1e-5 #@param
out_size=540 #@param
base_size=20 #@param
n_layers=4 #@param
scale=3 #@param
p_prompts = []
embed = perceptor.encode_text(clip.tokenize(text).to(device)).float()
p_prompts.append(Prompt(embed, 1, float('-inf')).to(device)) # 1 is the weight
# SOme negative prompts
n_prompts = []
for pr in ["Random noise", 'saturated rainbow RGB deep dream']:
embed = perceptor.encode_text(clip.tokenize(pr).to(device)).float()
n_prompts.append(Prompt(embed, 0.5, float('-inf')).to(device)) # 0.5 is the weight
# The ImageStack - trying a different scale and n_layers
ims = ImStack(base_size=base_size, scale=scale, n_layers=n_layers, out_size=out_size, decay=0.4)
optimizer = optim.Adam(ims.layers, lr=lr, weight_decay=weight_decay)
losses = []
for i in range(n_iter):
optimizer.zero_grad()
if i < 15: # Save time by skipping the cutouts and focusing on the lower layers
im = ims.preview(n_preview=1 + i//20 )
iii = perceptor.encode_image(normalize(im)).float()
else:
im = ims()
iii = perceptor.encode_image(normalize(make_cutouts(im))).float()
l = 0
for prompt in p_prompts:
l += prompt(iii)
for prompt in n_prompts:
l -= prompt(iii)
losses.append(float(l.detach().cpu()))
l.backward() # Backprop
optimizer.step() # Update
im = ims.to_pil()
return np.array(im)
iface = gr.Interface(fn=generate,
inputs=[
gr.inputs.Textbox(label="Text Input"),
gr.inputs.Number(default=42, label="N Steps")
],
outputs=[
gr.outputs.Image(type="numpy", label="Output Image")
],
).launch() |