File size: 9,535 Bytes
9b86185
931341e
 
 
 
 
 
 
 
 
 
 
 
9b86185
931341e
 
 
 
 
 
 
c9bf0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b86185
0934670
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b86185
 
 
 
0192256
9b86185
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gradio as gr

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import torch.optim as optim

import kornia.augmentation as K
from CLIP import clip
from torchvision import transforms

from PIL import Image
import numpy as np
import math

from matplotlib import pyplot as plt
from fastprogress.fastprogress import master_bar, progress_bar
from IPython.display import HTML
from base64 import b64encode

# Definitions
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

def sinc(x):
    return torch.where(x != 0, torch.sin(math.pi * x) / (math.pi * x), x.new_ones([]))
 
 
def lanczos(x, a):
    cond = torch.logical_and(-a < x, x < a)
    out = torch.where(cond, sinc(x) * sinc(x/a), x.new_zeros([]))
    return out / out.sum()
 
 
def ramp(ratio, width):
    n = math.ceil(width / ratio + 1)
    out = torch.empty([n])
    cur = 0
    for i in range(out.shape[0]):
        out[i] = cur
        cur += ratio
    return torch.cat([-out[1:].flip([0]), out])[1:-1]

class Prompt(nn.Module):
    def __init__(self, embed, weight=1., stop=float('-inf')):
        super().__init__()
        self.register_buffer('embed', embed)
        self.register_buffer('weight', torch.as_tensor(weight))
        self.register_buffer('stop', torch.as_tensor(stop))
 
    def forward(self, input):
        input_normed = F.normalize(input.unsqueeze(1), dim=2)
        embed_normed = F.normalize(self.embed.unsqueeze(0), dim=2)
        dists = input_normed.sub(embed_normed).norm(dim=2).div(2).arcsin().pow(2).mul(2)
        dists = dists * self.weight.sign()
        return self.weight.abs() * replace_grad(dists, torch.maximum(dists, self.stop)).mean()

class MakeCutouts(nn.Module):
    def __init__(self, cut_size, cutn, cut_pow=1.):
        super().__init__()
        self.cut_size = cut_size
        self.cutn = cutn
        self.cut_pow = cut_pow
        self.augs = nn.Sequential(
            K.RandomHorizontalFlip(p=0.5),
            K.RandomSharpness(0.3,p=0.4),
            K.RandomAffine(degrees=30, translate=0.1, p=0.8, padding_mode='border'),
            K.RandomPerspective(0.2,p=0.4),
            K.ColorJitter(hue=0.01, saturation=0.01, p=0.7))
        self.noise_fac = 0.1 

    def forward(self, input):
        sideY, sideX = input.shape[2:4]
        max_size = min(sideX, sideY)
        min_size = min(sideX, sideY, self.cut_size)
        cutouts = []
        for _ in range(self.cutn):
            size = int(torch.rand([])**self.cut_pow * (max_size - min_size) + min_size)
            offsetx = torch.randint(0, sideX - size + 1, ())
            offsety = torch.randint(0, sideY - size + 1, ())
            cutout = input[:, :, offsety:offsety + size, offsetx:offsetx + size]
            cutouts.append(resample(cutout, (self.cut_size, self.cut_size)))
        batch = self.augs(torch.cat(cutouts, dim=0))
        if self.noise_fac:
            facs = batch.new_empty([self.cutn, 1, 1, 1]).uniform_(0, self.noise_fac)
            batch = batch + facs * torch.randn_like(batch)
        return batch

def resample(input, size, align_corners=True):
    n, c, h, w = input.shape
    dh, dw = size
 
    input = input.view([n * c, 1, h, w])
 
    if dh < h:
        kernel_h = lanczos(ramp(dh / h, 2), 2).to(input.device, input.dtype)
        pad_h = (kernel_h.shape[0] - 1) // 2
        input = F.pad(input, (0, 0, pad_h, pad_h), 'reflect')
        input = F.conv2d(input, kernel_h[None, None, :, None])
 
    if dw < w:
        kernel_w = lanczos(ramp(dw / w, 2), 2).to(input.device, input.dtype)
        pad_w = (kernel_w.shape[0] - 1) // 2
        input = F.pad(input, (pad_w, pad_w, 0, 0), 'reflect')
        input = F.conv2d(input, kernel_w[None, None, None, :])
 
    input = input.view([n, c, h, w])
    return F.interpolate(input, size, mode='bicubic', align_corners=align_corners)

class ReplaceGrad(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x_forward, x_backward):
        ctx.shape = x_backward.shape
        return x_forward
 
    @staticmethod
    def backward(ctx, grad_in):
        return None, grad_in.sum_to_size(ctx.shape)
 
 
replace_grad = ReplaceGrad.apply 

# Set up CLIP
perceptor = clip.load('ViT-B/32', jit=False)[0].eval().requires_grad_(False).to(device)
normalize = transforms.Normalize(mean=[0.48145466, 0.4578275, 0.40821073],
                                 std=[0.26862954, 0.26130258, 0.27577711])
cut_size = perceptor.visual.input_resolution
cutn=64
cut_pow=1
make_cutouts = MakeCutouts(cut_size, cutn, cut_pow=cut_pow)

# ImStack
class ImStack(nn.Module):
  """ This class represents an image as a series of stacked arrays, where each is 1/2
  the resolution of the next. This is useful eg when trying to create an image to minimise
  some loss - parameters in the early (small) layers can have an affect on the overall 
  structure and shapes while those in later layers act as residuals and fill in fine detail.
  """

  def __init__(self, n_layers=3, base_size=32, scale=2,
               init_image=None, out_size=256, decay=0.7):
    """Constructs the Image Stack

    Args:
        TODO
    """
    super().__init__()
    self.n_layers = n_layers
    self.base_size = base_size
    self.sig = nn.Sigmoid()
    self.layers = []

    for i in range(n_layers):
        side = base_size * (scale**i)
        tim = torch.randn((3, side, side)).to(device)*(decay**i)
        self.layers.append(tim)

    self.scalers = [nn.Upsample(scale_factor=out_size/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
    
    self.preview_scalers = [nn.Upsample(scale_factor=224/(l.shape[1]), mode='bilinear', align_corners=False) for l in self.layers]
    
    if init_image != None: # Given a PIL image, decompose it into a stack
      downscalers = [nn.Upsample(scale_factor=(l.shape[1]/out_size), mode='bilinear', align_corners=False) for l in self.layers]
      final_side = base_size * (scale ** n_layers)
      im = torch.tensor(np.array(init_image.resize((out_size, out_size)))/255).clip(1e-03, 1-1e-3) # Between 0 and 1 (non-inclusive)
      im = im.permute(2, 0, 1).unsqueeze(0).to(device) # torch.log(im/(1-im))
      for i in range(n_layers):self.layers[i] *= 0 # Sero out the layers
      for i in range(n_layers):
        side = base_size * (scale**i)
        out = self.forward()
        residual = (torch.logit(im) - torch.logit(out))
        Image.fromarray((torch.logit(residual).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)).save(f'residual{i}.png')
        self.layers[i] = downscalers[i](residual).squeeze()
    
    for l in self.layers: l.requires_grad = True

  def forward(self):
    im = self.scalers[0](self.layers[0].unsqueeze(0))
    for i in range(1, self.n_layers):
      im += self.scalers[i](self.layers[i].unsqueeze(0))
    return self.sig(im)

  def preview(self, n_preview=2):
    im = self.preview_scalers[0](self.layers[0].unsqueeze(0))
    for i in range(1, n_preview):
      im += self.preview_scalers[i](self.layers[i].unsqueeze(0))
    return self.sig(im)
  
  def to_pil(self):
    return Image.fromarray((self.forward().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))

  def preview_pil(self):
    return Image.fromarray((self.preview().detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8))

  def save(self, fn):
    self.to_pil().save(fn)

  def plot_layers(self):
    fig, axs = plt.subplots(1, self.n_layers, figsize=(15, 5))
    for i in range(self.n_layers):
      im = (self.sig(self.layers[i].unsqueeze(0)).detach().cpu().squeeze().permute([1, 2, 0]) * 255).numpy().astype(np.uint8)
      axs[i].imshow(im)
      
 


def generate(text, n_iter):
    
    lr=0.25 #@param
    # init_image=None #@param
    weight_decay=1e-5 #@param
    out_size=540 #@param
    base_size=20 #@param
    n_layers=4 #@param
    scale=3 #@param



    p_prompts = []
    embed = perceptor.encode_text(clip.tokenize(text).to(device)).float()
    p_prompts.append(Prompt(embed, 1, float('-inf')).to(device)) # 1 is the weight

    # SOme negative prompts
    n_prompts = []
    for pr in ["Random noise", 'saturated rainbow RGB deep dream']:
      embed = perceptor.encode_text(clip.tokenize(pr).to(device)).float()
      n_prompts.append(Prompt(embed, 0.5, float('-inf')).to(device)) # 0.5 is the weight

    # The ImageStack - trying a different scale and n_layers
    ims = ImStack(base_size=base_size, scale=scale, n_layers=n_layers, out_size=out_size, decay=0.4)
    
    optimizer = optim.Adam(ims.layers, lr=lr, weight_decay=weight_decay)
    losses = []

    for i in range(n_iter):
        optimizer.zero_grad()
    
        if i < 15: # Save time by skipping the cutouts and focusing on the lower layers 
          im = ims.preview(n_preview=1 + i//20 )
          iii = perceptor.encode_image(normalize(im)).float()
        else:
          im = ims()
          iii = perceptor.encode_image(normalize(make_cutouts(im))).float()
        
        l = 0
        for prompt in p_prompts:
          l += prompt(iii)
        for prompt in n_prompts:
          l -= prompt(iii)
    
        losses.append(float(l.detach().cpu()))
        l.backward() # Backprop
        optimizer.step() # Update

  im = ims.to_pil() 
  return np.array(im)

iface = gr.Interface(fn=generate, 
  inputs=[
    gr.inputs.Textbox(label="Text Input"),
    gr.inputs.Number(default=42, label="N Steps")
  ], 
  outputs=[
    gr.outputs.Image(type="numpy", label="Output Image")
  ],
  ).launch()