File size: 7,877 Bytes
edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a edfffd4 0ade37a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
from typing import Tuple, Dict, List, Optional
import streamlit as st
import supervision as sv
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
from PIL import Image
import torch
torch.cuda.is_available = lambda: False # Force CPU-only mode in HF Space
# Page config
st.set_page_config(
page_title="Medieval Manuscript Segmentation",
page_icon="π",
layout="wide"
)
# Define models
MODEL_OPTIONS = {
"YOLOv11-Nano": "medieval-yolo11n-seg.pt",
"YOLOv11-Small": "medieval-yolo11s-seg.pt",
"YOLOv11-Medium": "medieval-yolo11m-seg.pt",
"YOLOv11-Large": "medieval-yolo11l-seg.pt",
"YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
"YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
"YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
"ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
"ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
"ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
"ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
"yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
"ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
"yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
}
@st.cache_resource
def load_models():
"""Load all models and cache them."""
models: Dict[str, YOLO] = {}
for name, model_file in MODEL_OPTIONS.items():
try:
model_path = hf_hub_download(
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
filename=model_file
)
models[name] = YOLO(model_path)
except Exception as e:
st.warning(f"Error loading model {name}: {str(e)}")
return models
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
"""Simplify polygon contours using Douglas-Peucker algorithm.
Args:
polygons: List of polygon contours
approx_level: Approximation level (0-1), lower values mean more simplification
Returns:
List of simplified polygons (or None for invalid polygons)
"""
result = []
for polygon in polygons:
if len(polygon) < 4:
result.append(None)
continue
perimeter = cv2.arcLength(polygon, True)
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
if len(approx) < 4:
result.append(None)
continue
result.append(approx.squeeze())
return result
# Custom MaskAnnotator for outline-only masks with simplified polygons
class OutlineMaskAnnotator:
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
self.color = color
self.thickness = thickness
self.simplify = simplify
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
if detections.mask is None:
return scene
scene = scene.copy()
for mask in detections.mask:
contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
if self.simplify:
contours = simplify_polygons(contours)
contours = [c for c in contours if c is not None]
cv2.drawContours(
scene,
contours,
-1,
self.color,
self.thickness
)
return scene
# Create annotators with new settings
LABEL_ANNOTATOR = sv.LabelAnnotator(
text_color=sv.Color.BLACK,
text_scale=0.35,
text_thickness=1,
text_padding=2
)
def detect_and_annotate(
image: np.ndarray,
model_name: str,
conf_threshold: float,
iou_threshold: float,
simplify_polygons_option: bool
) -> np.ndarray:
# Get the selected model
model = models[model_name]
# Perform inference
results = model.predict(
image,
conf=conf_threshold,
iou=iou_threshold
)[0]
# Convert results to supervision Detections
boxes = results.boxes.xyxy.cpu().numpy()
confidence = results.boxes.conf.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy().astype(int)
# Handle masks if they exist
masks = None
if results.masks is not None:
masks = results.masks.data.cpu().numpy()
# Convert from (N,H,W) to (H,W,N) for processing
masks = np.transpose(masks, (1, 2, 0))
h, w = image.shape[:2]
resized_masks = []
for i in range(masks.shape[-1]):
resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
resized_masks.append(resized_mask > 0.5)
masks = np.stack(resized_masks) if resized_masks else None
# Create Detections object
detections = sv.Detections(
xyxy=boxes,
confidence=confidence,
class_id=class_ids,
mask=masks
)
# Create labels with confidence scores
labels = [
f"{results.names[class_id]} ({conf:.2f})"
for class_id, conf
in zip(class_ids, confidence)
]
# Create mask annotator based on the simplify option
mask_annotator = OutlineMaskAnnotator(
color=(255, 0, 0),
thickness=2,
simplify=simplify_polygons_option
)
# Annotate image
annotated_image = image.copy()
if masks is not None:
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
return annotated_image
# Load models
models = load_models()
# App title
st.title("Medieval Manuscript Segmentation with YOLO")
# Sidebar for controls
with st.sidebar:
st.header("Detection Settings")
model_name = st.selectbox(
"Model",
options=list(MODEL_OPTIONS.keys()),
index=0,
help="Select YOLO model variant"
)
conf_threshold = st.slider(
"Confidence Threshold",
min_value=0.0,
max_value=1.0,
value=0.25,
step=0.05,
help="Minimum confidence score for detections"
)
iou_threshold = st.slider(
"IoU Threshold",
min_value=0.0,
max_value=1.0,
value=0.45,
step=0.05,
help="Decrease for stricter detection, increase for more overlapping masks"
)
simplify_polygons_option = st.checkbox(
"Simplify Polygons",
value=False,
help="Simplify polygon contours for cleaner outlines"
)
# Main content area
col1, col2 = st.columns(2)
with col1:
st.subheader("Input Image")
uploaded_file = st.file_uploader(
"Upload an image",
type=["jpg", "jpeg", "png"],
key="file_uploader"
)
if uploaded_file is not None:
image = np.array(Image.open(uploaded_file))
st.image(image, caption="Uploaded Image", use_container_width=True) # Updated here
else:
image = None
st.info("Please upload an image file")
with col2:
st.subheader("Detection Result")
if st.button("Detect", type="primary") and image is not None:
with st.spinner("Processing image..."):
annotated_image = detect_and_annotate(
image,
model_name,
conf_threshold,
iou_threshold,
simplify_polygons_option
)
st.image(annotated_image, caption="Detection Result", use_container_width=True) # Updated here
elif image is None:
st.warning("Please upload an image first")
else:
st.info("Click the Detect button to process the image") |