Spaces:
Sleeping
Sleeping
File size: 8,144 Bytes
ed6e12e d138ef9 2953294 d138ef9 d038733 d84956a 7a427f3 e089e29 ecb62c8 077b32a bfd9005 451d6e0 870a790 9cd4ea9 deac2e7 d2ad623 171836d 3f7c545 d038733 7052992 d138ef9 ed6e12e 3424f21 3bbb070 3424f21 ed6e12e 7052992 3424f21 ed6e12e 3424f21 ed6e12e 3424f21 7052992 d138ef9 d038733 d138ef9 c08b087 d138ef9 3424f21 d138ef9 c08b087 3424f21 c08b087 3424f21 d138ef9 5de898a d138ef9 c47825f d138ef9 3424f21 d138ef9 d038733 3424f21 d038733 3424f21 3e52246 3424f21 c08b087 3424f21 d138ef9 3424f21 d138ef9 3424f21 c08b087 3424f21 c08b087 3424f21 d138ef9 c08b087 d138ef9 7052992 d138ef9 3424f21 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
from typing import Tuple, Dict, List, Optional
import gradio as gr
import supervision as sv
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
# Define models
MODEL_OPTIONS = {
"YOLOv11-Nano": "medieval-yolo11n-seg.pt",
"YOLOv11-Small": "medieval-yolo11s-seg.pt",
"YOLOv11-Medium": "medieval-yolo11m-seg.pt",
"YOLOv11-Large": "medieval-yolo11l-seg.pt",
"YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
"YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
"YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
"ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
"ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
"ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
"ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
"yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
"ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
"yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
}
# Dictionary to store loaded models
models: Dict[str, YOLO] = {}
# Load all models
for name, model_file in MODEL_OPTIONS.items():
try:
model_path = hf_hub_download(
repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
filename=model_file
)
models[name] = YOLO(model_path)
except Exception as e:
print(f"Error loading model {name}: {str(e)}")
def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
"""Simplify polygon contours using Douglas-Peucker algorithm.
Args:
polygons: List of polygon contours
approx_level: Approximation level (0-1), lower values mean more simplification
Returns:
List of simplified polygons (or None for invalid polygons)
"""
result = []
for polygon in polygons:
if len(polygon) < 4:
result.append(None)
continue
perimeter = cv2.arcLength(polygon, True)
approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
if len(approx) < 4:
result.append(None)
continue
result.append(approx.squeeze())
return result
# Custom MaskAnnotator for outline-only masks with simplified polygons
class OutlineMaskAnnotator:
def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
self.color = color
self.thickness = thickness
self.simplify = simplify
def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
if detections.mask is None:
return scene
scene = scene.copy()
for mask in detections.mask:
contours, _ = cv2.findContours(
mask.astype(np.uint8),
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE
)
if self.simplify:
contours = simplify_polygons(contours)
contours = [c for c in contours if c is not None]
cv2.drawContours(
scene,
contours,
-1,
self.color,
self.thickness
)
return scene
# Create annotators with new settings
LABEL_ANNOTATOR = sv.LabelAnnotator(
text_color=sv.Color.BLACK,
text_scale=0.35,
text_thickness=1,
text_padding=2
)
def detect_and_annotate(
image: np.ndarray,
model_name: str,
conf_threshold: float,
iou_threshold: float,
simplify_polygons_option: bool
) -> np.ndarray:
# Get the selected model
model = models[model_name]
# Perform inference
results = model.predict(
image,
conf=conf_threshold,
iou=iou_threshold
)[0]
# Convert results to supervision Detections
boxes = results.boxes.xyxy.cpu().numpy()
confidence = results.boxes.conf.cpu().numpy()
class_ids = results.boxes.cls.cpu().numpy().astype(int)
# Handle masks if they exist
masks = None
if results.masks is not None:
masks = results.masks.data.cpu().numpy()
# Convert from (N,H,W) to (H,W,N) for processing
masks = np.transpose(masks, (1, 2, 0))
h, w = image.shape[:2]
resized_masks = []
for i in range(masks.shape[-1]):
resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
resized_masks.append(resized_mask > 0.5)
masks = np.stack(resized_masks) if resized_masks else None
# Create Detections object
detections = sv.Detections(
xyxy=boxes,
confidence=confidence,
class_id=class_ids,
mask=masks
)
# Create labels with confidence scores
labels = [
f"{results.names[class_id]} ({conf:.2f})"
for class_id, conf
in zip(class_ids, confidence)
]
# Create mask annotator based on the simplify option
mask_annotator = OutlineMaskAnnotator(
color=(255, 0, 0),
thickness=2,
simplify=simplify_polygons_option
)
# Annotate image
annotated_image = image.copy()
if masks is not None:
annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
return annotated_image
# Rest of the Gradio interface remains exactly the same
with gr.Blocks() as demo:
gr.Markdown("# Medieval Manuscript Segmentation with YOLO")
with gr.Row():
with gr.Column():
input_image = gr.Image(
label="Input Image",
type='numpy'
)
with gr.Accordion("Detection Settings", open=True):
model_selector = gr.Dropdown(
choices=list(MODEL_OPTIONS.keys()),
value=list(MODEL_OPTIONS.keys())[0],
label="Model",
info="Select YOLO model variant"
)
with gr.Row():
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.0,
maximum=1.0,
step=0.05,
value=0.45,
info="Decrease for stricter detection, increase for more overlapping masks"
)
simplify_polygons_option = gr.Checkbox(
label="Simplify Polygons",
value=False,
info="Simplify polygon contours for cleaner outlines"
)
with gr.Row():
clear_btn = gr.Button("Clear")
detect_btn = gr.Button("Detect", variant="primary")
with gr.Column():
output_image = gr.Image(
label="Detection Result",
type='numpy'
)
def process_image(
image: np.ndarray,
model_name: str,
conf_threshold: float,
iou_threshold: float,
simplify_polygons_option: bool
) -> Tuple[np.ndarray, np.ndarray]:
if image is None:
return None, None
annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold, simplify_polygons_option)
return image, annotated_image
def clear():
return None, None
detect_btn.click(
process_image,
inputs=[input_image, model_selector, conf_threshold, iou_threshold, simplify_polygons_option],
outputs=[input_image, output_image]
)
clear_btn.click(
clear,
inputs=None,
outputs=[input_image, output_image]
)
if __name__ == "__main__":
demo.launch(debug=True, show_error=True) |