File size: 8,144 Bytes
ed6e12e
d138ef9
 
 
2953294
d138ef9
 
 
d038733
 
d84956a
7a427f3
e089e29
ecb62c8
077b32a
bfd9005
451d6e0
870a790
9cd4ea9
deac2e7
d2ad623
171836d
3f7c545
 
d038733
 
 
 
 
 
 
7052992
 
 
 
 
 
 
 
d138ef9
ed6e12e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3424f21
3bbb070
3424f21
 
ed6e12e
7052992
3424f21
 
 
 
 
 
 
 
 
 
 
ed6e12e
 
 
 
3424f21
 
 
 
ed6e12e
3424f21
 
 
 
 
 
 
 
 
 
 
7052992
d138ef9
 
d038733
d138ef9
c08b087
 
d138ef9
3424f21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d138ef9
c08b087
 
 
 
 
 
 
3424f21
 
 
c08b087
3424f21
 
 
d138ef9
5de898a
d138ef9
c47825f
d138ef9
 
 
3424f21
 
 
 
d138ef9
d038733
 
 
3424f21
 
d038733
3424f21
 
 
 
 
 
 
 
 
 
 
 
 
 
3e52246
3424f21
c08b087
 
 
 
 
3424f21
 
 
d138ef9
 
3424f21
 
 
 
d138ef9
3424f21
 
 
 
c08b087
 
3424f21
 
 
c08b087
3424f21
d138ef9
 
 
 
 
 
c08b087
d138ef9
 
7052992
 
 
 
 
d138ef9
 
3424f21
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from typing import Tuple, Dict, List, Optional
import gradio as gr
import supervision as sv
import numpy as np
import cv2
from huggingface_hub import hf_hub_download
from ultralytics import YOLO

# Define models
MODEL_OPTIONS = {
    "YOLOv11-Nano": "medieval-yolo11n-seg.pt",
    "YOLOv11-Small": "medieval-yolo11s-seg.pt",
    "YOLOv11-Medium": "medieval-yolo11m-seg.pt",
    "YOLOv11-Large": "medieval-yolo11l-seg.pt",
    "YOLOv11-XLarge": "medieval-yolo11x-seg.pt",
    "YOLOv11-Medium Zones": "medieval_zones-yolo11m-seg.pt",
    "YOLOv11-Medium Lines": "medieval_lines-yolo11m-seg.pt",
    "ms_yolo11m-seg4-YTG": "ms_yolo11m-seg4-YTG.pt",
    "ms_yolo11m-seg5-swin_t": "ms_yolo11m-seg5-swin_t.pt",
    "ms_yolo11x-seg2-swin_t": "ms_yolo11x-seg2-swin_t.pt",
    "ms_yolo11m-seg6-convnext_tiny": "ms_yolo11m-seg6-convnext_tiny.pt",
    "yolo11m-seg-gpt": "yolo11m-seg-gpt.pt",
    "ms_yolo11x-seg3-swin_t-fpn": "ms_yolo11x-seg3-swin_t-fpn.pt",
    "yolo11x-seg-gpt7": "yolo11x-seg-gpt7.pt"
}

# Dictionary to store loaded models
models: Dict[str, YOLO] = {}

# Load all models
for name, model_file in MODEL_OPTIONS.items():
    try:
        model_path = hf_hub_download(
            repo_id="johnlockejrr/medieval-manuscript-yolov11-seg",
            filename=model_file
        )
        models[name] = YOLO(model_path)
    except Exception as e:
        print(f"Error loading model {name}: {str(e)}")

def simplify_polygons(polygons: List[np.ndarray], approx_level: float = 0.01) -> List[Optional[np.ndarray]]:
    """Simplify polygon contours using Douglas-Peucker algorithm.
    
    Args:
        polygons: List of polygon contours
        approx_level: Approximation level (0-1), lower values mean more simplification
        
    Returns:
        List of simplified polygons (or None for invalid polygons)
    """
    result = []
    for polygon in polygons:
        if len(polygon) < 4:
            result.append(None)
            continue

        perimeter = cv2.arcLength(polygon, True)
        approx = cv2.approxPolyDP(polygon, approx_level * perimeter, True)
        if len(approx) < 4:
            result.append(None)
            continue

        result.append(approx.squeeze())
    return result

# Custom MaskAnnotator for outline-only masks with simplified polygons
class OutlineMaskAnnotator:
    def __init__(self, color: tuple = (255, 0, 0), thickness: int = 2, simplify: bool = False):
        self.color = color
        self.thickness = thickness
        self.simplify = simplify
        
    def annotate(self, scene: np.ndarray, detections: sv.Detections) -> np.ndarray:
        if detections.mask is None:
            return scene
            
        scene = scene.copy()
        for mask in detections.mask:
            contours, _ = cv2.findContours(
                mask.astype(np.uint8),
                cv2.RETR_EXTERNAL,
                cv2.CHAIN_APPROX_SIMPLE
            )
            if self.simplify:
                contours = simplify_polygons(contours)
                contours = [c for c in contours if c is not None]
                
            cv2.drawContours(
                scene,
                contours,
                -1,
                self.color,
                self.thickness
            )
        return scene

# Create annotators with new settings
LABEL_ANNOTATOR = sv.LabelAnnotator(
    text_color=sv.Color.BLACK,
    text_scale=0.35,
    text_thickness=1,
    text_padding=2
)

def detect_and_annotate(
    image: np.ndarray,
    model_name: str,
    conf_threshold: float,
    iou_threshold: float,
    simplify_polygons_option: bool
) -> np.ndarray:
    # Get the selected model
    model = models[model_name]
    
    # Perform inference
    results = model.predict(
        image,
        conf=conf_threshold,
        iou=iou_threshold
    )[0]
    
    # Convert results to supervision Detections
    boxes = results.boxes.xyxy.cpu().numpy()
    confidence = results.boxes.conf.cpu().numpy()
    class_ids = results.boxes.cls.cpu().numpy().astype(int)
    
    # Handle masks if they exist
    masks = None
    if results.masks is not None:
        masks = results.masks.data.cpu().numpy()
        # Convert from (N,H,W) to (H,W,N) for processing
        masks = np.transpose(masks, (1, 2, 0))
        h, w = image.shape[:2]
        resized_masks = []
        for i in range(masks.shape[-1]):
            resized_mask = cv2.resize(masks[..., i], (w, h), interpolation=cv2.INTER_LINEAR)
            resized_masks.append(resized_mask > 0.5)
        masks = np.stack(resized_masks) if resized_masks else None
    
    # Create Detections object
    detections = sv.Detections(
        xyxy=boxes,
        confidence=confidence,
        class_id=class_ids,
        mask=masks
    )
    
    # Create labels with confidence scores
    labels = [
        f"{results.names[class_id]} ({conf:.2f})"
        for class_id, conf
        in zip(class_ids, confidence)
    ]

    # Create mask annotator based on the simplify option
    mask_annotator = OutlineMaskAnnotator(
        color=(255, 0, 0),
        thickness=2,
        simplify=simplify_polygons_option
    )

    # Annotate image
    annotated_image = image.copy()
    if masks is not None:
        annotated_image = mask_annotator.annotate(scene=annotated_image, detections=detections)
    annotated_image = LABEL_ANNOTATOR.annotate(scene=annotated_image, detections=detections, labels=labels)
    
    return annotated_image

# Rest of the Gradio interface remains exactly the same
with gr.Blocks() as demo:
    gr.Markdown("# Medieval Manuscript Segmentation with YOLO")
    
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(
                label="Input Image",
                type='numpy'
            )
            with gr.Accordion("Detection Settings", open=True):
                model_selector = gr.Dropdown(
                    choices=list(MODEL_OPTIONS.keys()),
                    value=list(MODEL_OPTIONS.keys())[0],
                    label="Model",
                    info="Select YOLO model variant"
                )
                with gr.Row():
                    conf_threshold = gr.Slider(
                        label="Confidence Threshold",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.25,
                    )
                    iou_threshold = gr.Slider(
                        label="IoU Threshold",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.05,
                        value=0.45,
                        info="Decrease for stricter detection, increase for more overlapping masks"
                    )
                simplify_polygons_option = gr.Checkbox(
                    label="Simplify Polygons",
                    value=False,
                    info="Simplify polygon contours for cleaner outlines"
                )
            with gr.Row():
                clear_btn = gr.Button("Clear")
                detect_btn = gr.Button("Detect", variant="primary")
                
        with gr.Column():
            output_image = gr.Image(
                label="Detection Result",
                type='numpy'
            )

    def process_image(
        image: np.ndarray,
        model_name: str,
        conf_threshold: float,
        iou_threshold: float,
        simplify_polygons_option: bool
    ) -> Tuple[np.ndarray, np.ndarray]:
        if image is None:
            return None, None
        annotated_image = detect_and_annotate(image, model_name, conf_threshold, iou_threshold, simplify_polygons_option)
        return image, annotated_image

    def clear():
        return None, None

    detect_btn.click(
        process_image,
        inputs=[input_image, model_selector, conf_threshold, iou_threshold, simplify_polygons_option],
        outputs=[input_image, output_image]
    )
    clear_btn.click(
        clear,
        inputs=None,
        outputs=[input_image, output_image]
    )

if __name__ == "__main__":
    demo.launch(debug=True, show_error=True)