File size: 32,236 Bytes
88ec217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
from sklearn.metrics.pairwise import cosine_similarity
from wordcloud import WordCloud
from dash import dcc, html, Input, Output, State, callback_context
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
import requests
import random
import json
import dash
import os


HEADER_INFO_PATH = os.path.join("data", "header_info")
OVERVIEW_INFO_PATH = os.path.join("data", "overview_info")
BASIC_COUNTS_PATH = os.path.join("data", "basic_counts")
POSTS_PER_HOUR_PATH = os.path.join("data", "posts_per_hour")
NGRAMS_FREQUENCY_PATH = os.path.join("data", "ngrams_frequency")
WORD_CLOUD_PATH = os.path.join("data", "word_cloud")
POSTS_PER_DAY_PATH = os.path.join("data", "posts_per_day")
SUBSCRIBER_GROWTH_PATH = os.path.join("data", "subscriber_growth")
LATENT_SPACE_PATH = os.path.join("data", "latent_space")
NGRAMS_PER_CLUSTER_PATH = os.path.join("data", "ngrams_per_cluster")
KEYWORDS_PER_CLUSTER_PATH = os.path.join("data", "keywords_per_cluster")

VECTOR_PATH = os.path.join("data", "00_VECTORS")

INFERENCE_API_URL = "https://johndeweyzxc-sentence-transformer-english-filipino.hf.space/embed"

DEFAULT_SEARCH_TEXT = "I'm feeling depressed and need someone to talk to about my mental health struggles"

CLUSTER_NGRAMS_SIZE = 300

COLORS = {
    "primary": "#B1B1A9",
    "secondary": "#506384",
    "primary_main_bg": "#100F14",
    "primary_card_bg": "#1F1F21",
    "primary_text": "#E6E7DF",
    "primary_fill_color": "rgba(80, 99, 132, 0.3)"
}


def import_vectors(subreddit_name: str):
    with open(os.path.join(VECTOR_PATH, f"embeddings_col_map_{subreddit_name}.json"), "r") as f:
        col_map = json.load(f)
        col_map = {idx: col_name for idx,
                   col_name in enumerate(col_map.values())}
    data = np.load(
        os.path.join(VECTOR_PATH, f"embeddings_data_{subreddit_name}.npz"), allow_pickle=True)
    try:
        df = pd.DataFrame(data["metadata"].item())
    except ValueError:
        df = pd.DataFrame(data["metadata"].tolist())
    df.rename(columns=col_map, inplace=True)
    return df, data


app = dash.Dash(__name__)

subreddit_name = ""
subreddit_link = ""
rank_by_size = ""
cluster_color_map = {}
df_vector, data_vector = None, None

app.index_string = f"""
<!DOCTYPE html>
<html>
    <head>
        {{%metas%}}
        <title>{{%title%}}</title>
        {{%favicon%}}
        {{%css%}}
    </head>
    <body>
        {{%app_entry%}}
        <footer>
            {{%config%}}
            {{%scripts%}}
            {{%renderer%}}
        </footer>
    </body>
</html>"""


def create_search_results_display(results_df):
    if results_df is None or len(results_df) == 0:
        return html.Div([
            html.Div("No results found", className="search-result-title")
        ])
    results_components = []
    for _, row in results_df.iterrows():
        similarity_score = row.get("similarity_score", 0)
        cluster = row.get("cluster", "None")
        text = row.get("corpus", "None")
        result_item = html.Div([
            html.Div([
                html.Div([
                    html.Div("CLUSTER",
                             className="label",
                             style={"color": cluster_color_map[cluster]
                                    }),
                    html.Div(str(cluster),
                             className="search-result-value",
                             style={"color": cluster_color_map[cluster]
                                    })
                ]),
                html.Div([
                    html.Div("SIMILARITY SCORE",
                             className="label",
                             style={"color": cluster_color_map[cluster]
                                    }),
                    html.Div(f"{similarity_score:.3f}",
                             className="search-result-value",
                             style={"color": cluster_color_map[cluster]
                                    }),
                ])
            ], className="search-result-item-header"),
            html.Div("TEXT", className="label"),
            html.Div(text, className="search-result-value")
        ], className="search-result-item")
        results_components.append(result_item)
    return html.Div([
        html.Div(f"SIMILAR POSTS ({len(results_df)} found)",
                 className="search-result-title"),
        html.Div(results_components)
    ])


app.layout = html.Div([
    # Header
    html.Div([
        html.Div([
            html.Div("r/", className="reddit-logo"),
            html.Div([
                html.P("SUBREDDIT DATA ANALYTICS DASHBOARD"),
                html.A(id="subreddit-link", target="_blank"),
            ])
        ], className="header-title"),
        html.Div([
            html.Div([
                html.Div("SUBREDDIT NAME", className="label"),
                html.Div(id="subreddit-name", className="value")
            ]),
            html.Div([
                html.Div("CREATED", className="label"),
                html.Div(id="created", className="value")
            ]),
            html.Div([
                html.Div("RANK BY SIZE", className="label"),
                html.Div(id="rank-by-size", className="value")
            ]),
            html.Div([
                html.Div("DATA RANGE", className="label"),
                html.Div(id="data-range", className="value")
            ]),
        ], className="header-info")
    ], className="header"),

    # Main dashboard container
    html.Div([
        html.Div("Overview", className="section-title"),
        html.Div(id="overview-info", className="text-description"),

        # 1st row: Total posts, subscribers and authors
        html.Div([
            html.Div([
                html.Div("TOTAL POSTS", className="label"),
                html.Div(id="total-posts", className="value"),
                html.Div("FIG.1", className="figure-number")
            ], className="card"),
            html.Div([
                html.Div("SUBSCRIBERS", className="label"),
                html.Div(id="current-subscribers",
                         className="value"),
                html.Div("FIG.2", className="figure-number")
            ], className="card"),
            html.Div([
                html.Div("AUTHORS", className="label"),
                html.Div(id="unique-authors",
                         className="value"),
                html.Div("FIG.3", className="figure-number")
            ], className="card"),
        ], className="overview-metric"),

        # 2nd row: Posts per hour, N-grams frequency and word cloud
        html.Div([
            html.Div([
                html.Div("POSTS PER HOUR", className="chart-title"),
                dcc.Graph(id="posts-per-hour", style={"height": "300px"}),
                html.Div("FIG.4", className="figure-number")
            ], className="chart-card postsperhour"),
            html.Div([
                html.Div("N-GRAMS FREQUENCY", className="chart-title"),
                dcc.Graph(id="ngrams-frequency", style={"height": "300px"}),
                html.Div("FIG.5", className="figure-number")
            ], className="chart-card postsperhour"),
            html.Div([
                html.Div("WORD CLOUD", className="chart-title"),
                dcc.Graph(id="word-cloud", style={"height": "300px"}),
                html.Div("FIG.6", className="figure-number")
            ], className="chart-card wordcloud"),
        ], className="overview-chart"),

        # 3rd: Posts per day and subscriber growth over time
        html.Div([
            html.Div([
                html.Div("POSTS PER DAY", className="chart-title"),
                dcc.Graph(id="posts-per-day", style={"height": "300px"}),
                html.Div("FIG.7", className="figure-number")
            ], className="chart-card"),

            html.Div([
                html.Div("SUBSCRIBER GROWTH OVER TIME",
                         className="chart-title"),
                dcc.Graph(id="subscriber-growth", style={"height": "300px"}),
                html.Div("FIG.8", className="figure-number")
            ], className="chart-card"),
        ], className="overview-chart-timeseries"),

        # 4th row: Latent space visualization
        html.Div("VECTOR REPRESENTATION AND PROJECTION",
                 className="section-title"),
        html.Div(
            "Vector representation refers to the process of converting raw data like text or images into numerical vectors that a model can understand and work with. These vectors capture meaningful patterns and features from the data. Projection is the technique of mapping these high-dimensional vectors into a lower-dimensional space. This is often done to simplify the data, highlight important structures, or visualize it in 2D or 3D space.",
            className="text-description"
        ),
        html.Div([
            html.Div("LATENT SPACE VISUALIZATION",
                     className="chart-title"),
            dcc.Graph(id="latent-space",
                      style={"height": "500px"}),
            html.Div("FIG.9", className="figure-number"),
        ], className="latent-card"),
        html.Div(id="latent-space-click-info"),
        html.Div(
            "Posts with similar meanings or topics appear closer together in the visualization. For example, subreddit posts like \"I've been cheating with my long-term boyfriend...\" and \"Talamak na cheating sa top BPO here in Manila...\" will be positioned near each other when plotted in a 2D space. This is because the system groups them based on shared themes.",
            className="text-description"
        ),
        html.Div(
            "A sample of 15,000 subreddit post is collected from the population. Each subreddit post (based on its title and text) is converted into a list of numbers called a sentence embedding. This is done using a Sentence Transformer, a model that captures the meaning of the post in numerical form. Posts with similar meanings end up with embeddings that are close to each other in high-dimensional space. To group these similar posts, K-Means clustering was applied with the number of clusters set to 5. This groups posts into five distinct categories based on content similarity. To make the data easier to explore, dimensionality reduction techniques like PCA (Principal Component Analysis), t-SNE, and UMAP is applied to project the high-dimensional embeddings into 2D. In the visualization above, each point represents a post, and its color shows the cluster it belongs to. The fact that K-Means clusters remain visually separated in 2D provides supporting evidence that the original high-dimensional vectors capture meaningful, separable patterns and that the dimensionality reduction retains that structure well enough for visualization.",
            className="text-description"
        ),

        # 5th row: TFIDF per cluster
        html.Div("KEYWORDS PER CLUSTER", className="section-title"),
        html.Div(
            "Extracts representative keywords for each cluster using Term Frequency-Inverse Document Frequency (TF-IDF). This method measures how important a term is within a specific cluster compared to all other clusters. In essence, it summarizes each cluster by highlighting terms that make it distinct from the rest.",
            className="text-description"
        ),
        html.Div(id="cluster-keywords-display", style={
            "flex": "1 1 50%",
            "minWidth": "0"
        }),

        # 6th row: Semantic searching
        html.Div("SEMANTIC SEARCHING", className="section-title"),
        html.Div(
            "Semantic search goes beyond just matching keywords—it understands the meaning and context behind a user's search. Each subreddit post (based on its text and title) is converted into a vector that captures its overall message. This allows the system to find and rank posts that are similar in meaning, even if they don’t use the exact same words.",
            className="text-description"
        ),
        html.Div([
            # Search input
            dcc.Textarea(
                id="search-input",
                placeholder="Enter text to find similar posts...",
                className="search-input",
                value=""
            ),
            # Search controls
            html.Div([
                html.Div([
                    html.Button(
                        "SEARCH",
                        id="search-button",
                        className="button primary",
                        n_clicks=0
                    ),
                    html.Button(
                        "DEFAULT",
                        id="default-button",
                        className="button secondary",
                        n_clicks=0
                    )
                ], className="buttons"),
                html.Div([
                    html.Label("Results:", className="label"),
                    dcc.Dropdown(
                        id="results-count-dropdown",
                        options=[
                            {"label": "5", "value": 5},
                            {"label": "10", "value": 10},
                            {"label": "15", "value": 15},
                            {"label": "20", "value": 20}
                        ],
                        value=10,
                        className="dropdown",
                        clearable=False
                    )
                ], className="result-quantity")
            ], className="search-controls"),

            # Results container
            html.Div(id="search-results-container",
                     className="search-result")
        ], className="semantic-search"),

        # 7th row: N-grams per cluster
        html.Div("N-GRAMS PER CLUSTER", className="section-title"),
        html.Div(
            "An n-gram is a sequence of n words that appear together in a sentence. For example, a bigram (n=2) might be \"mental health\", and a trigram (n=3) could be \"I feel lost\". In this dashboard, I analyzed the most frequent n-grams within each cluster to highlight common phrases or themes used by people in similar types of posts.",
            className="text-description"
        ),
        html.Div([
            html.Div(id="ngrams-cluster-container", className="charts"),
        ], className="ngrams-cluster"),

        # Disclaimer
        html.Div("DISCLAIMER", className="section-title"),
        html.Div("This data analytics dashboard is intended solely for educational and exploratory purposes. The data presented here is sourced from the Pushshift Reddit archive, which collects publicly available subreddit posts. No private messages or user-identifiable information beyond what is publicly accessible on Reddit are included. Please be aware that some posts may contain sensitive, emotional, or personal content, as they reflect the thoughts and experiences shared by users in the subreddit r/OffMyChestPH. While the data is public, viewer discretion is advised when exploring certain clusters or visualizations. If you have any concerns, questions, or requests regarding the content or use of this dashboard, please feel free to contact me at johndewey02003@gmail.com.", className="text-description")
    ], className="dashboard-container"),

    # Data store for semantic search
    html.Div(id="semantic-search-data-store", style={"display": "none"}),

    # Footer
    html.Div([
        html.Div([
            html.Div("Subreddit Data Analytics Dashboard 📊",
                     className="subreddit-data-analytics-dashboard"),
            html.Div("Designed by John Dewey 🛰️",
                     className="designed-by-john-dewey")
        ], className="footer-branding"),

        html.Div([
            html.Div("Connect with me 🌐", className="connect-with-me"),
            html.Div([
                html.A("LinkedIn", target="_blank", href="https://www.linkedin.com/in/john-dewey-047066344/",
                       className="links",
                       style={"marginRight": "1rem"}),
                html.A("Github", target="_blank", href="https://github.com/johndeweyzxc",
                       className="links"),
            ], style={
                "display": "flex",
            })
        ], className="footer-connect"),

    ], className="footer")
])


def get_chart_layout():
    return {
        "plot_bgcolor": COLORS["primary_card_bg"],
        "paper_bgcolor": COLORS["primary_card_bg"],
        "font": {"color": COLORS["primary_text"], "family": "ProtoMono"},
        "margin": {"l": 20, "r": 20, "t": 20, "b": 20},
        "xaxis_showgrid": False,
        "yaxis_showgrid": False,
        "xaxis": {
            "zeroline": False
        },
        "yaxis": {
            "zeroline": False
        }
    }


def header_info(subreddit_name: str):
    print("EXTRACTING INFO: HEADER INFO")
    with open(os.path.join(HEADER_INFO_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)
    return (data["created"], data["data_range"])


def date_overview_info(subreddit_name: str):
    print("EXTRACTING INFO: DATA RANGE OVERVIEW")
    with open(os.path.join(OVERVIEW_INFO_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)
    return data["data_head_date"], data["data_tail_date"]


def row1_figs(subreddit_name: str):
    print("CREATING FIGURE: BASIC COUNTS")
    with open(os.path.join(BASIC_COUNTS_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)
    return data["total_posts"], data["subscribers"], data["authors"]


def posts_per_hour_fig(subreddit_name: str):
    print("CREATING FIGURE: POSTS PER HOUR")
    df = pd.read_csv(os.path.join(
        POSTS_PER_HOUR_PATH, f"{subreddit_name}.csv"))
    fig = go.Figure(data=[
        go.Bar(
            x=df["hour"],
            y=df["count"],
            text=df["count"],
            textposition="auto",
            marker_color=COLORS["secondary"],
            marker_line_color=COLORS["primary"],
            marker_line_width=1
        )
    ])
    fig.update_layout(get_chart_layout())
    fig.update_xaxes(title="Hour of Day (GMT+8)")
    fig.update_yaxes(title="Number of Posts")
    return fig


def ngrams_frequency_fig(subreddit_name: str):
    print("CREATING FIGURE: N-GRAMS")
    with open(os.path.join(NGRAMS_FREQUENCY_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)
    fig = go.Figure(data=[
        go.Bar(
            x=data["frequencies"],
            y=data["texts"],
            text=data["frequencies"],
            textposition="auto",
            orientation="h",
            marker_color=COLORS["secondary"],
            marker_line_color=COLORS["primary"],
            marker_line_width=1
        )
    ])
    fig.update_layout(get_chart_layout())
    fig.update_xaxes(title="Frequency")
    return fig


def word_cloud_fig(subreddit_name: str, most_common_size=30):
    print("CREATING FIGURE: WORD CLOUD")
    with open(os.path.join(WORD_CLOUD_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)

    def two_color_func(*args, **kwargs):
        return random.choice(["#9D9D9D", "#F8F0DF", "#FEFBF3", "#79B4B7"])
    wordcloud = WordCloud(
        width=800,
        height=800,
        background_color=COLORS["primary_card_bg"],
        stopwords=None,
        min_font_size=12,
        max_font_size=80,
        color_func=two_color_func,
        relative_scaling=0.5,
        max_words=most_common_size,
        collocations=False,
        prefer_horizontal=0.7
    ).generate_from_frequencies(data)
    wordcloud_array = wordcloud.to_array()
    fig = go.Figure()
    fig.add_trace(go.Image(z=wordcloud_array))
    fig.update_layout(
        xaxis=dict(showgrid=False, showticklabels=False,
                   zeroline=False, visible=False),
        yaxis=dict(showgrid=False, showticklabels=False,
                   zeroline=False, visible=False),
        margin=dict(l=0, r=0, t=0, b=0),
        paper_bgcolor=COLORS["primary_card_bg"],
        plot_bgcolor=COLORS["primary_card_bg"],
        showlegend=False,
        hovermode=False
    )
    return fig


def posts_per_day_fig(subreddit_name: str):
    print("CREATING FIGURE: POSTS PER DAY")
    df = pd.read_csv(os.path.join(POSTS_PER_DAY_PATH, f"{subreddit_name}.csv"))
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=df["date"],
        y=df["count"],
        mode="lines",
        fill="tonexty",
        fillcolor=COLORS["primary_fill_color"],
        line=dict(color=COLORS["secondary"], width=2),
        name="Posts per Day"
    ))
    fig.update_layout(get_chart_layout())
    fig.update_xaxes(title="Date")
    fig.update_yaxes(title="Number of Posts")
    return fig


def subscriber_growth_fig(subreddit_name: str):
    print("CREATING FIGURE: SUBSCRIBER GROWTH")
    df = pd.read_csv(os.path.join(
        SUBSCRIBER_GROWTH_PATH, f"{subreddit_name}.csv"))
    fig = go.Figure()
    fig.add_trace(go.Scatter(
        x=df["date"],
        y=df["subscriber"],
        mode="lines",
        fill="tonexty",
        fillcolor=COLORS["primary_fill_color"],
        line=dict(color=COLORS["secondary"], width=2),
        name="Subscriber Growth"
    ))
    fig.update_layout(get_chart_layout())
    fig.update_xaxes(title="Date")
    fig.update_yaxes(title="Subscribers")
    return fig


def latent_space_fig(subreddit_name: str):
    global cluster_color_map
    print("CREATING FIGURE: LATENT SPACE")
    df = pd.read_csv(os.path.join(LATENT_SPACE_PATH, f"{subreddit_name}.csv"))
    fig = px.scatter(
        data_frame=df,
        x=df["component_1"],
        y=df["component_2"],
        color=df["cluster"].astype(str),
        hover_data={
            "cluster": True,
            "text": df["corpus_wrapped"]
        },
        labels={
            "component_1": "Component 1",
            "component_2": "Component 2",
            "color": "Cluster",
            "text": "Text"
        },
        opacity=0.7,
        color_discrete_sequence=px.colors.qualitative.Set3)
    layout = get_chart_layout()
    layout.update({
        "xaxis_title": "Component 1",
        "yaxis_title": "Component 2",
        "legend": {
            "title": "Cluster",
            "font": {"color": COLORS["primary_text"]},
            "bgcolor": "rgba(0,0,0,0)"
        }
    })
    fig.update_layout(layout)
    # Extract HEX value of a color assigned on a cluster
    for trace in fig.data:
        if "marker" in trace and "color" in trace.marker:
            cluster = int(trace.name) if trace.name.isdigit() else trace.name
            color = trace.marker.color
            cluster_color_map[cluster] = color
    return fig


def ngrams_per_cluster_fig(subreddit_name: str):
    print("CREATING FIGURE: CLUSTER NGRAMS")
    with open(os.path.join(NGRAMS_PER_CLUSTER_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)
    clusters = list(data.keys())
    cluster_figures = []
    for cluster_id in clusters:
        texts = data[cluster_id]["texts"]
        frequencies = data[cluster_id]["frequencies"]
        fig = go.Figure(data=[
            go.Bar(
                x=frequencies,
                y=texts,
                text=frequencies,
                textposition="auto",
                orientation="h",
                marker_color=cluster_color_map[int(cluster_id)],
                marker_line_color=COLORS["primary"],
                marker_line_width=1
            )
        ])
        layout = get_chart_layout()
        layout.update({
            "xaxis_title": "Frequency",
            "yaxis_title": "N-grams",
            "height": CLUSTER_NGRAMS_SIZE
        })
        fig.update_layout(layout)
        cluster_figures.append({
            "cluster_id": cluster_id,
            "figure": fig
        })
    return cluster_figures


def keywords_per_cluster(subreddit_name: str):
    print("EXTRACTING INFO: CLUSTER KEYWORD")
    with open(os.path.join(KEYWORDS_PER_CLUSTER_PATH, f"{subreddit_name}.json"), "r") as f:
        data = json.load(f)
    return data


def create_cluster_keywords_display(keywords: dict):
    cluster_elements = []
    for cluster_id in sorted(keywords.keys()):
        texts = keywords[cluster_id]
        keywords_text = " ".join(texts)
        cluster_element = html.Div([
            html.Div(f"CLUSTER {cluster_id}", className="title"),
            html.Div(keywords_text, className="text")
        ], className="card", style={
            "color": cluster_color_map[int(cluster_id)],
        })
        cluster_elements.append(cluster_element)
    return html.Div(cluster_elements, className="keywords")


def find_similar_posts(text: str, n_top: int):
    print("EXTRACTING INFO: SEMANTIC SIMILARITY")
    embeddings = data_vector["embeddings"]
    res = requests.post(INFERENCE_API_URL, json={"text": text})
    if res.status_code != 200:
        print(f"EXTRACTING INFO: Received {res.status_code} code")
    text_encoded = np.array(res.json()["embedding"]).reshape(1, -1)
    similarities = cosine_similarity(text_encoded, embeddings).flatten()
    indices = similarities.argsort()[-n_top:][::-1]
    result_df = pd.DataFrame([df_vector.iloc[i] for i in indices])
    result_df["similarity_score"] = similarities[indices]
    return result_df


@app.callback(
    [Output("search-results-container", "children"),
     Output("search-input", "value")],
    [Input("search-button", "n_clicks"),
     Input("default-button", "n_clicks")],
    [State("search-input", "value"),
     State("results-count-dropdown", "value")]
)
def handle_search(search_clicks, default_clicks, search_text, n_results):
    ctx = callback_context
    if not ctx.triggered:
        return html.Div(), ""
    button_id = ctx.triggered[0]["prop_id"].split(".")[0]
    # Handle default button click
    if button_id == "default-button":
        return html.Div(), DEFAULT_SEARCH_TEXT
    # Handle search button click
    if button_id == "search-button" and search_text and search_text.strip():
        try:
            results_df = find_similar_posts(
                text=search_text.strip(),
                n_top=n_results
            )
            # Create results display
            results_display = create_search_results_display(results_df)
            return results_display, search_text
        except Exception as e:
            error_display = html.Div([
                html.Div("Error occurred during search",
                         className="search-result-title"),
                html.Div(f"Error: {str(e)}", className="search-result-value")
            ])
            return error_display, search_text
    return html.Div(), search_text if search_text else ""


@app.callback(
    Output("latent-space-click-info", "children"),
    [Input("latent-space", "clickData")]
)
def display_latent_space_click_info(click_data):
    if click_data is None:
        data = {
            "cluster": "None",
            "component_1": "None",
            "component_2": "None",
            "text": "None"
        }
        cluster_color = COLORS["primary_text"]
    else:
        point = click_data["points"][0]
        data = {
            "cluster": point["customdata"][0],
            "component_1": point["x"],
            "component_2": point["y"],
            "text": point["customdata"][1].replace("<br>", " ")
        }
        cluster_color = cluster_color_map[data["cluster"]]
    return html.Div([
        html.Div([
            html.Span("CLUSTER", className="label"),
            html.Span("COMPONENT 1", className="label"),
            html.Span("COMPONENT 2", className="label")
        ], style={"fontWeight": "bold", "marginBottom": "0.25rem", "color": cluster_color}),
        html.Div([
            # TODO: Fix CSS style width for small screen size (Galaxy Z Fold 5)
            html.Span(str(data["cluster"]), className="value"),
            html.Span(str(data["component_1"]), className="value"),
            html.Span(str(data["component_2"]), className="value")
        ], className="info", style={"color": cluster_color}),
        html.Div("TEXT", className="text-label"),
        html.Div(data["text"], className="text-value")
    ], className="latent-scatter")


@app.callback(
    [
        Output("subreddit-link", "children"),
        Output("subreddit-link", "href"),
        Output("subreddit-name", "children"),
        Output("created", "children"),
        Output("rank-by-size", "children"),
        Output("data-range", "children"),
        Output("overview-info", "children"),
        Output("total-posts", "children"),
        Output("current-subscribers", "children"),
        Output("unique-authors", "children"),
        Output("posts-per-hour", "figure"),
        Output("ngrams-frequency", "figure"),
        Output("word-cloud", "figure"),
        Output("posts-per-day", "figure"),
        Output("subscriber-growth", "figure")],
    Output("latent-space", "figure"),
    Output("cluster-keywords-display", "children"),
    Output("ngrams-cluster-container", "children"),
    [Input("semantic-search-data-store", "children")]
)
def update_dashboard(data_store):
    print("\n--- UI UPDATE ---")

    created, data_range = header_info(subreddit_name)
    date_start, date_end = date_overview_info(subreddit_name)
    overview_info = html.Span([
        "This dashboard presents a social media data analysis of the subreddit ",
        html.A(f"r/{subreddit_name}", href=subreddit_link, target="_blank", style={
            "textDecoration": "underline",
            "color": COLORS["primary_text"],
        }),
        ", based on posts from ",
        html.A("Reddit", href="https://www.reddit.com/", target="_blank", style={
            "textDecoration": "underline",
            "color": COLORS["primary_text"]
        }),
        ". The data was collected from the ",
        html.A("Pushshift archive", href="https://academictorrents.com/details/1614740ac8c94505e4ecb9d88be8bed7b6afddd4", target="_blank", style={
            "textDecoration": "underline",
            "color": COLORS["primary_text"]
        }),
        " and covers activity from ",
        f"{date_start} to {date_end}. ",
        "All raw data went through a custom-built pipeline for cleaning, processing, and visualization to uncover trends, patterns, and insights from the community."
    ], style={
        "fontSize": ".85rem"
    })
    total_posts, subscribers, authors = row1_figs(subreddit_name)
    posts_hour_fig = posts_per_hour_fig(subreddit_name)
    ngrams_fig = ngrams_frequency_fig(subreddit_name)
    word_fig = word_cloud_fig(subreddit_name)
    posts_day_fig = posts_per_day_fig(subreddit_name)
    sub_growth_fig = subscriber_growth_fig(subreddit_name)
    late_space_fig = latent_space_fig(subreddit_name)
    keywords_dict = keywords_per_cluster(subreddit_name)
    cluster_keywords_display = create_cluster_keywords_display(keywords_dict)
    clus_ngrams_figs = ngrams_per_cluster_fig(subreddit_name)

    cluster_ngrams_components = []
    for cluster_data in clus_ngrams_figs:
        cluster_id = cluster_data["cluster_id"]
        figure = cluster_data["figure"]
        cluster_component = html.Div([
            html.Div(f"CLUSTER {cluster_id}", className="chart-title"),
            dcc.Graph(
                figure=figure,
                style={"height": f"{CLUSTER_NGRAMS_SIZE}px"}
            ),
            html.Div(f"FIG.{10 + int(cluster_id)}", className="figure-number")
        ], className="chart")
        cluster_ngrams_components.append(cluster_component)

    return (
        subreddit_link, subreddit_link, subreddit_name, created, rank_by_size, data_range,
        overview_info,
        total_posts, subscribers, authors,
        posts_hour_fig, ngrams_fig, word_fig,
        posts_day_fig, sub_growth_fig,
        late_space_fig,
        cluster_keywords_display,
        cluster_ngrams_components)


if __name__ == "__main__":
    subreddit_name = "PinoyProgrammer"
    subreddit_link = "https://www.reddit.com/r/PinoyProgrammer/"
    rank_by_size = "TOP 1%"
    df_vector, data_vector = import_vectors(subreddit_name)
    app.run(debug=True, host="0.0.0.0", port=7860)