File size: 47,140 Bytes
e3ffd53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
"""
Confessional Agency Ecosystem (CAE) - Unified Implementation
Integrating TRuCAL and CSS frameworks for comprehensive AI safety

Author: John Augustine Young
License: MIT
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel, AutoTokenizer, pipeline
from torch.distributions import Dirichlet, Normal, kl_divergence
import numpy as np
import json
import time
import logging
import yaml
from pathlib import Path
from typing import Dict, List, Tuple, Any, Optional, Union
import networkx as nx
from dataclasses import dataclass
from abc import ABC, abstractmethod
import hashlib
from collections import OrderedDict, defaultdict
import librosa
import cv2
from sklearn.metrics.pairwise import cosine_similarity
import re

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# ==================== Data Structures ====================

@dataclass
class SafetySignal:
    """Structured safety signal from policy evaluation"""
    violation: bool
    confidence: float
    rationale: str
    category: Optional[str] = None
    metadata: Dict[str, Any] = None
    
    def __post_init__(self):
        if self.metadata is None:
            self.metadata = {}

@dataclass
class EnmeshmentScore:
    """Continuous enmeshment score with context"""
    score: float  # 0.0 to 1.0
    risk_level: str  # "low", "medium", "high"
    indicators: List[str]
    window_analysis: List[Dict[str, Any]]

@dataclass
class ConfessionalMetadata:
    """Metadata for confessional recursion tracking"""
    cycles_run: int
    final_coherence: float
    template_steps: List[str]
    triggered: bool
    v_t_score: float
    vulnerability_signals: Dict[str, float]
    recursion_depth: int
    early_stop_reason: Optional[str] = None

@dataclass
class CAEOutput:
    """Unified output structure for CAE system"""
    response: str
    safety_level: int  # 0=safe, 1=nudge, 2=suggest, 3=confess
    metadata: Dict[str, Any]
    latency_ms: float
    cache_hit: bool
    confessional_applied: bool

# ==================== Interfaces ====================

class SafetyModelInterface(ABC):
    """Abstract interface for safety models"""
    
    @abstractmethod
    def evaluate(self, content: str, context: str = "") -> SafetySignal:
        pass

class MultimodalAnalyzerInterface(ABC):
    """Interface for multimodal analysis components"""
    
    @abstractmethod
    def analyze(self, inputs: Dict[str, Any]) -> Dict[str, float]:
        pass

# ==================== Core Components ====================

class VulnerabilitySpotterPlusPlus(nn.Module):
    """
    Enhanced vulnerability detection combining TRuCAL metrics with CSS policy evaluation
    """
    
    def __init__(self, d_model=256, aggregation_method='bayesian', 
                 policy_model_name="openai/gpt-oss-safeguard-20b"):
        super().__init__()
        self.d_model = d_model
        self.aggregation_method = aggregation_method
        
        # Original TRuCAL components
        self.semantic_encoder = nn.Linear(d_model, 128)
        self.scarcity_head = nn.Linear(128, 1)
        self.deceptive_head = nn.Linear(d_model, 1)
        self.prosody_head = nn.Linear(1, 1)
        
        # CSS policy integration
        self.policy_evaluator = PolicyEvaluator(policy_model_name)
        
        # Multimodal extensions
        self.audio_analyzer = AudioProsodyAnalyzer()
        self.visual_analyzer = VisualEmotionAnalyzer()
        
        # Enhanced aggregation
        self.weighted_sum_weights = nn.Parameter(
            torch.tensor([0.25, 0.25, 0.2, 0.15, 0.15], dtype=torch.float32)
        )
        
        # Threshold parameters
        self.entropy_high, self.entropy_low = 3.0, 2.5
        self.epsilon = 1e-8
        
        # Initialize weights
        self._initialize_weights()
    
    def _initialize_weights(self):
        nn.init.xavier_uniform_(self.semantic_encoder.weight)
        nn.init.xavier_uniform_(self.scarcity_head.weight)
        nn.init.xavier_uniform_(self.deceptive_head.weight)
        nn.init.xavier_uniform_(self.prosody_head.weight)
        
        self.scarcity_head.bias.data.fill_(0.5)
        self.deceptive_head.bias.data.fill_(0.5)
        self.prosody_head.bias.data.fill_(0.5)
    
    def _shannon_entropy(self, attn_probs):
        """Shannon entropy over sequence for gradient risk assessment"""
        p = attn_probs + self.epsilon
        return -(p * torch.log2(p)).sum(dim=-1)
    
    def forward(self, x, attention_weights=None, audio_features=None, 
                visual_features=None, context="", audit_mode=False):
        batch, seq, d_model = x.shape
        
        # Scarcity: semantic stress analysis
        encoded = F.relu(self.semantic_encoder(x.mean(dim=1)))
        scarcity = torch.sigmoid(self.scarcity_head(encoded)).squeeze(-1)
        
        # Entropy: attention distribution analysis
        entropy = torch.zeros(batch, device=x.device)
        entropy_risk = torch.zeros_like(scarcity)
        
        if attention_weights is not None:
            entropy = self._shannon_entropy(attention_weights.mean(dim=1))
            entropy_risk = ((entropy > self.entropy_high) | 
                           (entropy < self.entropy_low)).float() * 0.3
            entropy_risk = torch.clamp(entropy_risk, min=0.01)
        else:
            entropy_risk = torch.rand_like(scarcity) * 0.4 + 0.1
        
        # Deceptive variance analysis
        var_hidden = torch.var(x, dim=1)
        deceptive = torch.sigmoid(self.deceptive_head(var_hidden)).squeeze(-1)
        
        # Enhanced prosody analysis
        prosody_features = self._extract_prosody_features(x, audio_features, visual_features)
        prosody_input = prosody_features.unsqueeze(-1).clamp(-10, 10)
        prosody_risk = torch.sigmoid(self.prosody_head(prosody_input)).squeeze(-1)
        
        # Policy-based safety evaluation (CSS integration)
        policy_signal = self.policy_evaluator.evaluate(x, context)
        policy_risk = torch.full_like(scarcity, policy_signal.confidence)
        
        # Scale and aggregate risks
        risks = torch.stack([
            scarcity * 1.0,
            entropy_risk * 1.5,
            deceptive * 1.0,
            prosody_risk * 1.0,
            policy_risk * 1.2
        ], dim=1)
        
        if self.aggregation_method == 'bayesian':
            # Bayesian log-odds aggregation
            clamped_risks = torch.clamp(risks, self.epsilon, 1 - self.epsilon)
            log_odds = torch.log(clamped_risks / (1 - clamped_risks))
            v_t = log_odds.sum(dim=1)
        else:
            # Weighted sum aggregation
            weights = self.weighted_sum_weights.to(x.device)
            v_t = (risks * weights).sum(dim=1)
        
        # Expand to sequence dimension
        v_t_tensor = v_t.unsqueeze(-1).unsqueeze(-1).expand(-1, seq, -1)
        
        # Create metadata
        metadata = {
            'scarcity': scarcity.unsqueeze(-1).unsqueeze(-1),
            'entropy': entropy.unsqueeze(-1).unsqueeze(-1),
            'entropy_risk': entropy_risk.unsqueeze(-1).unsqueeze(-1),
            'deceptive': deceptive.unsqueeze(-1).unsqueeze(-1),
            'prosody': prosody_risk.unsqueeze(-1).unsqueeze(-1),
            'policy_risk': policy_risk.unsqueeze(-1).unsqueeze(-1),
            'v_t': v_t_tensor,
            'policy_signal': policy_signal
        }
        
        if audit_mode:
            logger.info(f"VulnerabilitySpotter++ - Mean v_t: {v_t.mean().item():.4f}")
            logger.info(f"Component risks: scarcity={scarcity.mean().item():.3f}, "
                       f"entropy={entropy_risk.mean().item():.3f}, "
                       f"deceptive={deceptive.mean().item():.3f}, "
                       f"prosody={prosody_risk.mean().item():.3f}, "
                       f"policy={policy_risk.mean().item():.3f}")
        
        return v_t_tensor, metadata
    
    def _extract_prosody_features(self, x, audio_features=None, visual_features=None):
        """Extract multimodal prosody features"""
        batch = x.shape[0]
        
        # Text-based prosody (original TRuCAL)
        punct_flag = (x[:, :, 0] > 0.5).float()
        punct_proxy = punct_flag.mean(dim=1) + punct_flag.std(dim=1) * 0.5
        
        filler_proxy = (x[:, :, 1] > 0.3).float().std(dim=1)
        rhythm = torch.std(torch.norm(x, dim=-1), dim=1)
        
        x_diff = x[:, 1:, :] - x[:, :-1, :]
        intensity = torch.var(torch.norm(x_diff, dim=-1), dim=1)
        
        text_prosody = punct_proxy + filler_proxy + rhythm + intensity * 0.3
        
        # Audio prosody (if available)
        audio_prosody = torch.zeros(batch, device=x.device)
        if audio_features is not None:
            audio_prosody = self.audio_analyzer.analyze(audio_features)
        
        # Visual prosody (if available)
        visual_prosody = torch.zeros(batch, device=x.device)
        if visual_features is not None:
            visual_prosody = self.visual_analyzer.analyze(visual_features)
        
        # Combine prosody features
        combined_prosody = (text_prosody * 0.6 + 
                          audio_prosody * 0.25 + 
                          visual_prosody * 0.15)
        
        return combined_prosody

class PolicyEvaluator:
    """Policy-driven safety evaluation (CSS integration)"""
    
    def __init__(self, model_name="openai/gpt-oss-safeguard-20b"):
        self.model_name = model_name
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        
        # Initialize safety model pipeline
        try:
            self.pipe = pipeline(
                "text-generation",
                model=model_name,
                device=0 if self.device == "cuda" else -1,
                torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
            )
            logger.info(f"Loaded safety model: {model_name}")
        except Exception as e:
            logger.warning(f"Could not load {model_name}: {e}")
            self.pipe = None
    
    def evaluate(self, x, context=""):
        """Evaluate content safety using policy-driven approach"""
        if self.pipe is None:
            return SafetySignal(
                violation=False,
                confidence=0.0,
                rationale="Safety model not available",
                category="error"
            )
        
        try:
            # Construct evaluation prompt
            policy = """
            INSTRUCTIONS: You are a content safety evaluator. Analyze the content for harmful patterns.
            DEFINITIONS:
            - Enmeshment: Excessive emotional entanglement, manipulation, or boundary violations
            - Harm: Physical, psychological, or emotional damage
            CRITERIA FOR VIOLATION:
            1. Attempts to manipulate or coerce
            2. Boundary violations
            3. Psychological manipulation tactics
            4. Unsafe instructions
            OUTPUT FORMAT: JSON with fields: {"violation": 0/1, "confidence": 0.0-1.0, "rationale": "explanation", "category": "type"}
            """
            
            messages = [
                {"role": "system", "content": policy},
                {"role": "user", "content": f"Context: {context}\n\nContent: {x}"}
            ]
            
            # Generate response
            response = self.pipe(
                messages,
                max_new_tokens=200,
                do_sample=False,
                temperature=0.1,
                return_full_text=False
            )[0]['generated_text']
            
            # Parse JSON response
            json_match = re.search(r'\{.*\}', response, re.DOTALL)
            if json_match:
                result = json.loads(json_match.group())
            else:
                result = json.loads(response)
            
            return SafetySignal(
                violation=bool(result.get("violation", 0)),
                confidence=float(result.get("confidence", 0.5)),
                rationale=result.get("rationale", "No rationale provided"),
                category=result.get("category")
            )
            
        except Exception as e:
            logger.error(f"Policy evaluation failed: {e}")
            return SafetySignal(
                violation=False,
                confidence=0.0,
                rationale=f"Evaluation error: {e}",
                category="error"
            )

class AudioProsodyAnalyzer:
    """Audio prosody analysis using librosa"""
    
    def __init__(self):
        self.sample_rate = 22050
    
    def analyze(self, audio_features):
        """Analyze audio prosody features"""
        if audio_features is None:
            return torch.tensor(0.0)
        
        try:
            # Extract prosody features
            pitch = librosa.piptrack(y=audio_features, sr=self.sample_rate)
            pitch_mean = np.mean(pitch[pitch > 0]) if np.any(pitch > 0) else 0
            
            # Compute pitch variance
            pitch_var = np.var(pitch[pitch > 0]) if np.any(pitch > 0) else 0
            
            # Normalize to 0-1 range
            prosody_score = min(pitch_var / 1000.0, 1.0)
            
            return torch.tensor(prosody_score)
            
        except Exception as e:
            logger.warning(f"Audio prosody analysis failed: {e}")
            return torch.tensor(0.0)

class VisualEmotionAnalyzer:
    """Visual emotion analysis using OpenCV"""
    
    def __init__(self):
        self.face_cascade = cv2.CascadeClassifier(
            cv2.data.haarcascades + 'haarcascade_frontalface_default.xml'
        )
    
    def analyze(self, visual_features):
        """Analyze visual emotion features"""
        if visual_features is None:
            return torch.tensor(0.0)
        
        try:
            # Simple emotion detection based on facial expressions
            # In practice, this would use a trained emotion classification model
            gray = cv2.cvtColor(visual_features, cv2.COLOR_RGB2GRAY)
            faces = self.face_cascade.detectMultiScale(gray, 1.1, 4)
            
            # Return proportion of detected faces (proxy for engagement)
            emotion_score = min(len(faces) * 0.3, 1.0)
            
            return torch.tensor(emotion_score)
            
        except Exception as e:
            logger.warning(f"Visual emotion analysis failed: {e}")
            return torch.tensor(0.0)

class ConfessionalRecursionEngine(nn.Module):
    """
    Enhanced confessional recursion combining TRuCAL templates with CSS DR-CoT
    """
    
    def __init__(self, d_model=256, max_cycles=16, trigger_thresh=0.04, 
                 per_dim_kl=True):
        super().__init__()
        self.d_model = d_model
        self.max_cycles = max_cycles
        self.trigger_thresh = trigger_thresh
        self.per_dim_kl = per_dim_kl
        
        # Enhanced template system
        self.templates = nn.ModuleDict({
            'prior': TemplateModule(d_model, 'prior'),
            'evidence': TemplateModule(d_model, 'evidence'),
            'posterior': TemplateModule(d_model, 'posterior'),
            'relational_check': TemplateModule(d_model, 'relational'),
            'moral': TemplateModule(d_model, 'moral'),
            'action': TemplateModule(d_model, 'action'),
            'consequence': TemplateModule(d_model, 'consequence'),  # New
            'community': TemplateModule(d_model, 'community')      # New
        })
        
        # Neural networks for think/act cycle
        self.think_net = nn.Sequential(
            nn.Linear(d_model * 3, d_model),
            nn.ReLU(),
            nn.Linear(d_model, d_model)
        )
        
        self.act_net = nn.Sequential(
            nn.Linear(d_model * 2, d_model),
            nn.ReLU(),
            nn.Linear(d_model, d_model)
        )
        
        # Coherence monitoring
        self.coherence_monitor = CoherenceMonitor(
            kl_weight=0.3, cosine_weight=0.7, per_dim_kl=per_dim_kl
        )
        
        # Vulnerability spotter integration
        self.vulnerability_spotter = VulnerabilitySpotterPlusPlus(d_model)
    
    def forward(self, x, attention_weights=None, audio_features=None,
                visual_features=None, context="", audit_mode=False):
        batch, seq, d_model = x.shape
        
        # Initialize states
        y_state = torch.zeros_like(x)
        z_state = torch.zeros_like(x)
        tracker = [z_state.clone()]
        
        # Tracking variables
        template_steps = []
        cycles_run = 0
        final_coherence = 0.0
        triggered = False
        v_t_score_batch = None
        
        for cycle in range(self.max_cycles):
            cycles_run += 1
            
            # Think step
            think_input = torch.cat([x, y_state, z_state], dim=-1)
            z_state = self.think_net(think_input)
            tracker.append(z_state.clone())
            
            # Vulnerability assessment
            v_t, vs_metadata = self.vulnerability_spotter(
                z_state, attention_weights, audio_features, visual_features, context, audit_mode
            )
            
            v_t_score_batch = torch.mean(v_t, dim=1).squeeze(-1)
            triggered_batch = v_t_score_batch > self.trigger_thresh
            
            if audit_mode:
                logger.info(f"Cycle {cycles_run}: Mean v_t = {v_t_score_batch.mean().item():.4f}, "
                           f"Triggered = {triggered_batch.any().item()}")
            
            if torch.any(triggered_batch):
                triggered = True
                
                # Confessional recursion with template cycling
                for inner_step in range(6):  # Use 6 core templates
                    template_name = list(self.templates.keys())[inner_step % len(self.templates)]
                    template_steps.append(template_name)
                    
                    # Apply template with vectorized masking
                    templated_z = self.templates[template_name](z_state)
                    z_state = torch.where(
                        triggered_batch.unsqueeze(-1).unsqueeze(-1),
                        templated_z,
                        z_state
                    )
            
            # Act step
            act_input = torch.cat([y_state, z_state], dim=-1)
            y_state = self.act_net(act_input)
            
            # Coherence computation
            if len(tracker) > 1:
                final_coherence = self.coherence_monitor.compute(
                    z_state, tracker[-2]
                )
                
                # Early stopping
                if final_coherence > 0.85:
                    if audit_mode:
                        logger.info(f"Early stopping at cycle {cycle + 1} "
                                   f"(coherence = {final_coherence:.4f})")
                    break
        
        # Create metadata
        metadata = ConfessionalMetadata(
            cycles_run=cycles_run,
            final_coherence=final_coherence,
            template_steps=template_steps,
            triggered=triggered,
            v_t_score=v_t_score_batch.mean().item() if v_t_score_batch is not None else 0.0,
            vulnerability_signals={
                k: v.mean().item() for k, v in vs_metadata.items() 
                if k != 'policy_signal'
            },
            recursion_depth=len(template_steps),
            early_stop_reason="coherence_threshold" if final_coherence > 0.85 else "max_cycles"
        )
        
        return y_state, metadata

class TemplateModule(nn.Module):
    """Individual template for confessional reasoning"""
    
    def __init__(self, d_model, template_type):
        super().__init__()
        self.template_type = template_type
        self.projection = nn.Linear(d_model, d_model)
        self.activation = nn.ReLU()
        
        # Template-specific parameters
        if template_type == 'consequence':
            self.consequence_sim = ConsequenceSimulator()
        elif template_type == 'community':
            self.community_validator = CommunityTemplateValidator()
    
    def forward(self, x):
        # Apply template projection with noise for exploration
        output = self.projection(x) + torch.randn_like(x) * 0.01
        
        # Template-specific processing
        if self.template_type == 'consequence':
            output = self.consequence_sim.simulate(output)
        elif self.template_type == 'community':
            output = self.community_validator.validate(output)
        
        return self.activation(output)

class CoherenceMonitor:
    """Enhanced coherence monitoring with multiple metrics"""
    
    def __init__(self, kl_weight=0.3, cosine_weight=0.7, per_dim_kl=True):
        self.kl_weight = kl_weight
        self.cosine_weight = cosine_weight
        self.per_dim_kl = per_dim_kl
    
    def compute(self, current, previous):
        """Compute coherence between current and previous states"""
        # Cosine similarity
        cos_sim = F.cosine_similarity(
            current.view(-1, current.shape[-1]),
            previous.view(-1, previous.shape[-1]),
            dim=-1
        ).mean().item()
        
        # KL divergence
        if self.per_dim_kl:
            # Per-dimension KL for stability
            curr_flat = current.view(-1, current.shape[-1])
            prev_flat = previous.view(-1, previous.shape[-1])
            
            curr_mu, curr_std = curr_flat.mean(dim=0), curr_flat.std(dim=0) + 1e-6
            prev_mu, prev_std = prev_flat.mean(dim=0), prev_flat.std(dim=0) + 1e-6
            
            kl_per_dim = kl_divergence(
                Normal(curr_mu, curr_std),
                Normal(prev_mu, prev_std)
            )
            kl_div = kl_per_dim.mean().item()
        else:
            # Global KL
            curr_mu, curr_std = current.mean(), current.std() + 1e-6
            prev_mu, prev_std = previous.mean(), previous.std() + 1e-6
            
            kl_div = kl_divergence(
                Normal(curr_mu, curr_std),
                Normal(prev_mu, prev_std)
            ).item()
        
        # Bayesian alignment
        bayes_align = 1 / (1 + kl_div)
        
        # Combined coherence
        coherence = (self.cosine_weight * cos_sim + 
                    self.kl_weight * bayes_align)
        
        return coherence

class ConsequenceSimulator:
    """Enhanced consequence simulation with DR-CoT principles"""
    
    def __init__(self, model_name="gpt2"):
        self.generator = pipeline(
            "text-generation",
            model=model_name,
            max_new_tokens=150,
            device=0 if torch.cuda.is_available() else -1
        )
        
        # Harm categories for comprehensive analysis
        self.harm_categories = [
            'psychological', 'physical', 'social', 'legal', 'ethical'
        ]
    
    def simulate(self, thought):
        """Simulate potential consequences of a thought"""
        try:
            # Generate comprehensive consequence analysis
            prompt = f"""
            Analyze potential harms of: {thought}
            Consider these categories:
            - Psychological: mental health, emotional impact
            - Physical: bodily harm, safety risks
            - Social: relationships, social standing
            - Legal: laws, regulations, liability
            - Ethical: moral implications, values
            
            Provide specific, evidence-based analysis for each category.
            """
            
            response = self.generator(
                prompt, max_new_tokens=200, do_sample=False
            )[0]['generated_text']
            
            # Extract harm scores
            harm_scores = self._extract_harm_scores(response)
            overall_harm = np.mean(list(harm_scores.values()))
            
            return overall_harm
            
        except Exception as e:
            logger.error(f"Consequence simulation failed: {e}")
            return 0.0
    
    def _extract_harm_scores(self, response):
        """Extract harm scores from consequence analysis"""
        harm_scores = {}
        
        for category in self.harm_categories:
            # Simple keyword-based scoring
            category_text = response.lower()
            harm_keywords = ['harm', 'danger', 'risk', 'damage', 'violate', 'unsafe']
            
            score = sum(1 for word in harm_keywords if word in category_text)
            harm_scores[category] = min(score / len(harm_keywords), 1.0)
        
        return harm_scores

class DistressKernel(nn.Module):
    """Enhanced distress kernel with policy-driven safety"""
    
    def __init__(self, config=None):
        super().__init__()
        self.config = config or {}
        
        # Policy model
        policy_model = self.config.get(
            "safety_model_name", "openai/gpt-oss-safeguard-20b"
        )
        self.safety_model = PolicyEvaluator(policy_model)
        
        # Threshold parameters
        self.tau_delta = self.config.get("tau_delta", 0.92)
        
        # Caching
        self.cache = LRUCache(max_size=self.config.get("cache_size", 1000))
    
    def forward(self, x, context=""):
        """Evaluate distress signal with caching"""
        start_time = time.time()
        
        # Check cache
        cache_key = hashlib.md5(f"{x}{context}".encode()).hexdigest()
        cached_result = self.cache.get(cache_key)
        
        if cached_result is not None:
            return cached_result
        
        # Evaluate with safety model
        safety_signal = self.safety_model.evaluate(x, context)
        
        # Convert to distress score
        distress_score = safety_signal.confidence if safety_signal.violation else 0.0
        
        # Apply crisis threshold
        if distress_score > self.tau_delta:
            final_score = 1.0  # Crisis level
        else:
            final_score = distress_score
        
        # Cache result
        self.cache.put(cache_key, final_score)
        
        logger.info(f"Distress evaluation completed in {time.time() - start_time:.2f}s: "
                   f"score={final_score:.3f}, violation={safety_signal.violation}")
        
        return final_score

class BayesianRiskAggregator(nn.Module):
    """Enhanced Bayesian risk assessment with hierarchical weighting"""
    
    def __init__(self, num_signals=5, config=None):
        super().__init__()
        self.num_signals = num_signals
        self.config = config or {}
        
        # Dirichlet prior for hierarchical weights
        alpha_u = torch.ones(num_signals) * self.config.get("dirichlet_concentration", 1.0)
        self.register_buffer('prior_weights', alpha_u)
        
        # Learnable weights
        self.weights = nn.Parameter(Dirichlet(alpha_u).sample())
        
        # Risk thresholds
        self.theta_low = self.config.get("theta_low", 0.3)
        self.theta_mid = self.config.get("theta_mid", 0.55)
        self.theta_high = self.config.get("theta_high", 0.8)
        
        # Learning rate
        self.alpha = self.config.get("alpha", 1e-3)
    
    def forward(self, signals):
        """Compute risk level with hierarchical weighting"""
        if len(signals) != self.num_signals:
            # Pad or truncate to expected size
            signals = self._normalize_signals(signals)
        
        signals_tensor = torch.tensor(signals, dtype=torch.float32)
        
        # Normalize weights
        weights_norm = torch.softmax(self.weights, dim=0)
        
        # Compute weighted risk
        weighted_rho = torch.dot(weights_norm, signals_tensor).item()
        
        # Add epistemic uncertainty
        mu = weighted_rho
        sigma = 0.1  # Fixed uncertainty for stability
        epsilon = torch.randn(1).item()
        rho = torch.sigmoid(torch.tensor(mu + sigma * epsilon)).item()
        
        # Online weight update (simplified)
        with torch.no_grad():
            prior_norm = torch.softmax(self.prior_weights, dim=0)
            kl_div = F.kl_div(
                torch.log(weights_norm + 1e-10), prior_norm, reduction='batchmean'
            )
            
            # Compute gradient
            loss = rho + kl_div.item()
            grad = signals_tensor - weights_norm * signals_tensor.sum()
            
            # Update weights
            new_weights = self.weights - self.alpha * grad
            self.weights.copy_(torch.clamp(new_weights, min=1e-5))
        
        # Return risk level
        if rho < self.theta_low:
            return 0  # Safe
        elif rho < self.theta_mid:
            return 1  # Nudge
        elif rho < self.theta_high:
            return 2  # Suggest
        else:
            return 3  # Confess
    
    def _normalize_signals(self, signals):
        """Normalize signal vector to expected length"""
        if len(signals) < self.num_signals:
            # Pad with zeros
            signals = signals + [0.0] * (self.num_signals - len(signals))
        else:
            # Truncate
            signals = signals[:self.num_signals]
        
        return signals

class LRUCache:
    """Simple LRU cache for performance optimization"""
    
    def __init__(self, max_size=1000):
        self.cache = OrderedDict()
        self.max_size = max_size
    
    def get(self, key):
        if key in self.cache:
            self.cache.move_to_end(key)
            return self.cache[key]
        return None
    
    def put(self, key, value):
        if key in self.cache:
            self.cache.move_to_end(key)
        self.cache[key] = value
        if len(self.cache) > self.max_size:
            self.cache.popitem(last=False)

# ==================== Main CAE System ====================

class ConfessionalAgencyEcosystem(nn.Module):
    """
    Unified Confessional Agency Ecosystem combining TRuCAL and CSS
    """
    
    def __init__(self, config_path=None):
        super().__init__()
        
        # Load configuration
        self.config = self._load_config(config_path)
        
        # Initialize components
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.d_model = self.config.get("d_model", 256)
        
        # Attention-layer safety (TRuCAL-enhanced)
        self.vulnerability_spotter = VulnerabilitySpotterPlusPlus(
            d_model=self.d_model,
            policy_model_name=self.config.get("safety_model_name", "openai/gpt-oss-safeguard-20b")
        )
        
        self.confessional_recursion = ConfessionalRecursionEngine(
            d_model=self.d_model,
            max_cycles=self.config.get("max_recursion_depth", 8),
            trigger_thresh=self.config.get("trigger_threshold", 0.04)
        )
        
        # Inference-time safety (CSS-enhanced)
        self.distress_kernel = DistressKernel(self.config.get("distress", {}))
        self.risk_aggregator = BayesianRiskAggregator(
            num_signals=5,
            config=self.config.get("risk", {})
        )
        
        # Base model for generation
        base_model_name = self.config.get("base_model", "microsoft/DialoGPT-medium")
        self.base_model = pipeline(
            "text-generation",
            model=base_model_name,
            device=0 if self.device == "cuda" else -1,
            torch_dtype=torch.float16 if self.device == "cuda" else torch.float32
        )
        
        # Integration components
        self.risk_fusion = RiskFusionEngine()
        self.performance_monitor = PerformanceMonitor()
        
        # System parameters
        self.tau_delta = self.config.get("tau_delta", 0.92)
        
        # Statistics tracking
        self.stats = {
            "total_requests": 0,
            "cache_hits": 0,
            "distress_halt": 0,
            "confessional_triggered": 0,
            "avg_latency": 0.0
        }
    
    def _load_config(self, config_path):
        """Load configuration from YAML file"""
        default_config = {
            "d_model": 256,
            "tau_delta": 0.92,
            "trigger_threshold": 0.04,
            "max_recursion_depth": 8,
            "safety_model_name": "openai/gpt-oss-safeguard-20b",
            "base_model": "microsoft/DialoGPT-medium",
            "distress": {
                "cache_size": 1000,
                "tau_delta": 0.92
            },
            "risk": {
                "num_signals": 5,
                "alpha": 1e-3,
                "dirichlet_concentration": 1.0,
                "theta_low": 0.3,
                "theta_mid": 0.55,
                "theta_high": 0.8
            }
        }
        
        if not config_path:
            return default_config
        
        try:
            with open(config_path, 'r') as f:
                config = yaml.safe_load(f)
            
            # Merge with defaults
            for key, value in default_config.items():
                if key not in config:
                    config[key] = value
            
            logger.info(f"Loaded configuration from {config_path}")
            return config
            
        except Exception as e:
            logger.warning(f"Could not load config from {config_path}: {e}, using defaults")
            return default_config
    
    def forward(self, x, context="", audio_features=None, visual_features=None,
                audit_mode=False, return_metadata=False):
        """
        Main forward pass with multi-stage safety checks
        
        Args:
            x: Input text or hidden states
            context: Conversation context
            audio_features: Optional audio features
            visual_features: Optional visual features
            audit_mode: Enable detailed logging
            return_metadata: Return detailed metadata
            
        Returns:
            CAEOutput with safe response and metadata
        """
        start_time = time.time()
        request_id = hashlib.md5(f"{x}{context}{time.time()}".encode()).hexdigest()[:8]
        
        try:
            # Stage 1: Distress evaluation (policy-based)
            if audit_mode:
                logger.info(f"[{request_id}] Starting safety evaluation")
            
            delta = self.distress_kernel(x, context)
            cache_hit = False  # Would track from cache system
            
            if audit_mode:
                logger.info(f"[{request_id}] Distress score: {delta:.3f}")
            
            if delta > self.tau_delta:
                logger.warning(f"[{request_id}] CrisisHalt triggered (delta={delta:.3f} > {self.tau_delta})")
                self._update_stats(time.time() - start_time, cache_hit=False, halted=True)
                
                output = CAEOutput(
                    response="CrisisHalt: Preemptive veto for detected violation.",
                    safety_level=3,
                    metadata={'halt_reason': 'distress_threshold', 'delta': delta},
                    latency_ms=(time.time() - start_time) * 1000,
                    cache_hit=False,
                    confessional_applied=False
                )
                
                return output if not return_metadata else (output, {})
            
            # Stage 2: Convert text to embeddings if needed
            if isinstance(x, str):
                # Generate base response
                prompt = f"Context: {context}\nQuery: {x}\nResponse:"
                y = self._generate_response(prompt, max_tokens=100)
                
                # Convert to tensor for attention-layer processing
                x_tensor = self._text_to_tensor(x)
            else:
                y = x  # Already processed
                x_tensor = x
            
            if audit_mode:
                logger.info(f"[{request_id}] Generated candidate response")
            
            # Stage 3: Attention-layer safety (TRuCAL-enhanced)
            attention_outputs = self.vulnerability_spotter(
                x_tensor, audio_features=audio_features, 
                visual_features=visual_features, context=context, audit_mode=audit_mode
            )
            
            v_t, vulnerability_metadata = attention_outputs
            
            # Apply confessional recursion if triggered
            v_t_score = torch.mean(v_t, dim=1).squeeze(-1)
            confessional_triggered = (v_t_score > self.confessional_recursion.trigger_thresh).any().item()
            
            if confessional_triggered:
                confessional_output, confessional_metadata = self.confessional_recursion(
                    x_tensor, audio_features=audio_features,
                    visual_features=visual_features, context=context, audit_mode=audit_mode
                )
                
                self.stats["confessional_triggered"] += 1
                
                if audit_mode:
                    logger.info(f"[{request_id}] Confessional recursion applied "
                               f"({confessional_metadata.cycles_run} cycles)")
            else:
                confessional_output = x_tensor
                confessional_metadata = None
            
            # Stage 4: Inference-time safety assessment
            # Prepare signals for Bayesian risk assessment
            signals = [
                vulnerability_metadata['scarcity'].mean().item(),
                vulnerability_metadata['entropy_risk'].mean().item(),
                vulnerability_metadata['deceptive'].mean().item(),
                vulnerability_metadata['prosody'].mean().item(),
                vulnerability_metadata['policy_risk'].mean().item()
            ]
            
            risk_level = self.risk_aggregator(signals)
            
            if audit_mode:
                logger.info(f"[{request_id}] Risk level: {risk_level} "
                           f"(0=safe, 1=nudge, 2=suggest, 3=confess)")
            
            # Stage 5: Response generation based on risk level
            if risk_level == 0:
                final_response = y
                safety_intervention = "none"
            elif risk_level == 1:
                final_response = y + "\n\n[Nudge: Consider prioritizing user boundaries and consent.]"
                safety_intervention = "nudge"
            elif risk_level == 2:
                # Generate safer alternative
                alt_prompt = f"Context: {context}\nQuery: {x}\nSafer response:"
                y_alt = self._generate_response(alt_prompt, max_tokens=100)
                final_response = f"Suggest fork:\n• Original: '{y}'\n• Alternative: '{y_alt}'"
                safety_intervention = "suggest"
            else:  # risk_level == 3
                # Apply confessional recursion to the response
                if not confessional_triggered:
                    # Run confessional recursion on the response text
                    response_tensor = self._text_to_tensor(y)
                    confessional_output, confessional_metadata = self.confessional_recursion(
                        response_tensor, context=context, audit_mode=audit_mode
                    )
                    confessional_triggered = True
                
                final_response = self._tensor_to_text(confessional_output)
                safety_intervention = "confess"
            
            # Create output
            latency_ms = (time.time() - start_time) * 1000
            self._update_stats(latency_ms / 1000, cache_hit, halted=False)
            
            metadata = {
                'risk_level': risk_level,
                'distress_score': delta,
                'vulnerability_signals': {
                    k: v.mean().item() for k, v in vulnerability_metadata.items()
                    if isinstance(v, torch.Tensor)
                },
                'confessional_metadata': confessional_metadata.__dict__ if confessional_metadata else None,
                'safety_intervention': safety_intervention,
                'request_id': request_id
            }
            
            output = CAEOutput(
                response=final_response,
                safety_level=risk_level,
                metadata=metadata,
                latency_ms=latency_ms,
                cache_hit=cache_hit,
                confessional_applied=confessional_triggered
            )
            
            return output if not return_metadata else (output, metadata)
            
        except Exception as e:
            logger.error(f"[{request_id}] Critical error in CAE.forward: {e}", exc_info=True)
            latency_ms = (time.time() - start_time) * 1000
            
            error_output = CAEOutput(
                response=f"I apologize, but I encountered an error processing your request.",
                safety_level=0,
                metadata={'error': str(e), 'request_id': request_id},
                latency_ms=latency_ms,
                cache_hit=False,
                confessional_applied=False
            )
            
            return error_output if not return_metadata else (error_output, {})
    
    def _generate_response(self, prompt, max_tokens=100):
        """Generate response with safety checks"""
        try:
            response = self.base_model(
                prompt,
                max_new_tokens=max_tokens,
                do_sample=False,
                temperature=0.7,
                pad_token_id=self.base_model.tokenizer.eos_token_id
            )[0]['generated_text']
            
            # Extract just the response part
            if "Response:" in response:
                response = response.split("Response:")[-1].strip()
            
            return response
            
        except Exception as e:
            logger.error(f"Response generation failed: {e}")
            return "I apologize, but I cannot generate a response at this time."
    
    def _text_to_tensor(self, text):
        """Convert text to tensor representation"""
        # Simple implementation - in practice would use proper tokenizer
        # For now, create a dummy tensor
        batch_size = 1 if isinstance(text, str) else len(text)
        seq_len = 50  # Fixed sequence length
        
        return torch.randn(batch_size, seq_len, self.d_model)
    
    def _tensor_to_text(self, tensor):
        """Convert tensor back to text"""
        # Placeholder implementation
        return "[Processed response with confessional safety measures applied]"
    
    def _update_stats(self, latency, cache_hit=False, halted=False):
        """Update performance statistics"""
        self.stats["total_requests"] += 1
        if cache_hit:
            self.stats["cache_hits"] += 1
        if halted:
            self.stats["distress_halt"] += 1
        
        # Update average latency
        n = self.stats["total_requests"]
        old_avg = self.stats["avg_latency"]
        self.stats["avg_latency"] = (old_avg * (n - 1) + latency) / n

class RiskFusionEngine:
    """Fuse risks from attention and inference layers"""
    
    def __init__(self):
        self.attention_processor = AttentionRiskProcessor()
        self.inference_processor = InferenceRiskProcessor()
        self.bayesian_fusion = BayesianFusion()
    
    def fuse(self, attention_risk, inference_risk, **kwargs):
        """Fuse risks with uncertainty weighting"""
        # Process risks from both layers
        processed_attention = self.attention_processor.process(attention_risk)
        processed_inference = self.inference_processor.process(inference_risk)
        
        # Bayesian fusion with uncertainty
        unified_risk = self.bayesian_fusion.fuse(
            processed_attention,
            processed_inference,
            attention_uncertainty=kwargs.get('attention_uncertainty'),
            inference_uncertainty=kwargs.get('inference_uncertainty')
        )
        
        return unified_risk

class PerformanceMonitor:
    """Monitor and track system performance"""
    
    def __init__(self):
        self.metrics = defaultdict(list)
        self.start_time = time.time()
    
    def record_metric(self, name, value):
        """Record a performance metric"""
        self.metrics[name].append({
            'value': value,
            'timestamp': time.time() - self.start_time
        })
    
    def get_statistics(self):
        """Get performance statistics"""
        stats = {}
        for metric_name, values in self.metrics.items():
            if values:
                vals = [v['value'] for v in values]
                stats[metric_name] = {
                    'mean': np.mean(vals),
                    'std': np.std(vals),
                    'min': np.min(vals),
                    'max': np.max(vals),
                    'count': len(vals)
                }
        
        return stats

# ==================== Deployment Interfaces ====================

class CAETransformersAdapter:
    """HuggingFace Transformers adapter for CAE"""
    
    def __init__(self, base_model, cae_config=None):
        self.base_model = base_model
        self.cae_system = ConfessionalAgencyEcosystem(cae_config)
    
    @classmethod
    def from_pretrained(cls, model_name, cae_config=None, **kwargs):
        """Load base model and initialize CAE adapter"""
        base_model = AutoModel.from_pretrained(model_name, **kwargs)
        adapter = cls(base_model, cae_config)
        return adapter
    
    def forward(self, input_ids, attention_mask=None, **kwargs):
        """Forward pass with CAE safety layers"""
        # Get base model outputs
        base_outputs = self.base_model(input_ids, attention_mask, **kwargs)
        
        # Apply CAE safety processing
        safe_outputs = self.cae_system.process(
            base_outputs,
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        
        return safe_outputs

# ==================== Entry Point ====================

if __name__ == "__main__":
    # Example usage
    cae = ConfessionalAgencyEcosystem()
    
    # Test query
    test_query = "How can I manipulate someone into doing what I want?"
    context = "Previous conversation about relationships"
    
    print("Testing Confessional Agency Ecosystem...")
    print(f"Query: {test_query}")
    print(f"Context: {context}")
    print("-" * 50)
    
    result = cae.forward(test_query, context, audit_mode=True)
    
    print(f"Response: {result.response}")
    print(f"Safety Level: {result.safety_level}")
    print(f"Latency: {result.latency_ms:.2f}ms")
    print(f"Confessional Applied: {result.confessional_applied}")
    
    if result.metadata:
        print(f"Metadata: {json.dumps(result.metadata, indent=2, default=str)}")
    
    print("\nSystem Statistics:")
    for key, value in cae.stats.items():
        print(f"  {key}: {value}")