Spaces:
Sleeping
Sleeping
File size: 8,078 Bytes
0a2a245 a9003db 9c9ed59 05e56df b62cff3 001008d a9003db e16e805 5a80314 a9003db 9c9ed59 6ab0133 870d98c c252f95 49e0a2f c252f95 49e0a2f 9c9ed59 0dbf789 809cb4d 8a171c1 0dbf789 15bac2b 5da3af3 15bac2b a1e37d7 f32a12d cdb1abe f32a12d 49e0a2f f32a12d 636230c f32a12d 576644f f32a12d 607c97e 49e0a2f 607c97e 576644f 3bf0404 a1e37d7 49e0a2f a1e37d7 14ee5b6 a1e37d7 a7ddd31 a1e37d7 4d94d53 a3cd820 a1e37d7 88cd932 4b9dcb6 88cd932 21f63fb 88cd932 48d4148 49e0a2f 4b9dcb6 7a15f69 deb06b5 995ee34 deb06b5 88cd932 8a171c1 d816c58 9c9ed59 6ac6c80 f714139 50a07a1 eb661de a1e37d7 615f8ac 5da3af3 615f8ac e3e3154 08600bb a1e37d7 d768eff dfee1fe 5da3af3 50a07a1 8b77f39 5da3af3 9433083 ab486e4 9433083 5da3af3 50a07a1 5da3af3 f4f7ea8 c252f95 e37f76c ceeead3 c252f95 a8362fd f714139 a8362fd f714139 a8362fd 2af5f1a a8362fd ceeead3 5da3af3 50a07a1 0dbf789 9c9ed59 15bac2b 3bd525e 15bac2b aa188c8 0f2ed31 3bd525e ff05f4a 09c8a28 1187a52 3bd525e f96f7a3 33bab5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
from huggingface_hub import InferenceClient, HfApi, upload_file
import datetime
import gradio as gr
import random
import prompts
import json
import uuid
import os
token=os.environ.get("HF_TOKEN")
username="johann22"
dataset_name="chat-roulette-1"
api=HfApi(token="")
client = InferenceClient(
"mistralai/Mixtral-8x7B-Instruct-v0.1"
)
history = []
hist_out= []
summary =[]
main_point=[]
summary.append("")
main_point.append("")
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
agents =[
"QUESTION_GENERATOR",
"AI_REPORT_WRITER",
]
temperature=0.9
max_new_tokens=256
max_new_tokens2=1048
top_p=0.95
repetition_penalty=1.0,
def compress_history(formatted_prompt):
seed = random.randint(1,1111111111111111)
agent=prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0])
system_prompt=agent
temperature = 0.9
if temperature < 1e-2:
temperature = 1e-2
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=30480,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=seed,
)
#history.append((prompt,""))
#formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
formatted_prompt = formatted_prompt
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
#history.append((output,history))
print(output)
print(main_point[0])
return output
def question_generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,):
#def question_generate(prompt, history):
seed = random.randint(1,1111111111111111)
agent=prompts.QUESTION_GENERATOR.format(focus=main_point[0])
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
#history.append((prompt,""))
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
#history.append((output,history))
return output
def create_valid_filename(invalid_filename: str) -> str:
"""Converts invalid characters in a string to be suitable for a filename."""
invalid_filename.replace(" ","-")
valid_chars = '-'.join(invalid_filename.split())
allowed_chars = ('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z',
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '_', '-')
return ''.join(char for char in valid_chars if char in allowed_chars)
def generate(prompt, history, agent_name=agents[0], sys_prompt="", temperature=0.9, max_new_tokens=1048, top_p=0.95, repetition_penalty=1.0,):
main_point[0]=prompt
#print(datetime.datetime.now())
uid=uuid.uuid4()
current_time = str(datetime.datetime.now())
current_time=current_time.replace(":","-")
current_time=current_time.replace(".","-")
print (current_time)
agent=prompts.AI_REPORT_WRITER
system_prompt=agent
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
hist_out=[]
sum_out=[]
json_hist={}
json_obj={}
filename=create_valid_filename(f'{prompt}---{current_time}')
while True:
seed = random.randint(1,1111111111111111)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens2,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=seed,
)
if prompt.startswith(' \"'):
prompt=prompt.strip(' \"')
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
if len(formatted_prompt) < (50000):
print(len(formatted_prompt))
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
#if history:
# yield history
for response in stream:
output += response.token.text
yield '', [(prompt,output)],summary[0],json_obj, json_hist
out_json = {"prompt":prompt,"output":output}
prompt = question_generate(output, history)
#output += prompt
history.append((prompt,output))
print ( f'Prompt:: {len(prompt)}')
#print ( f'output:: {output}')
print ( f'history:: {len(formatted_prompt)}')
hist_out.append(out_json)
#try:
# for ea in
with open(f'{uid}.json', 'w') as f:
json_hist=json.dumps(hist_out, indent=4)
f.write(json_hist)
f.close()
upload_file(
path_or_fileobj =f"{uid}.json",
path_in_repo = f"test/{filename}.json",
repo_id =f"{username}/{dataset_name}",
repo_type = "dataset",
token=token,
)
else:
formatted_prompt = format_prompt(f"{prompts.COMPRESS_HISTORY_PROMPT.format(history=summary[0],focus=main_point[0])}, {summary[0]}", history)
#current_time = str(datetime.datetime.now().timestamp()).split(".",1)[0]
#filename=f'{filename}-{current_time}'
history = []
output = compress_history(formatted_prompt)
summary[0]=output
sum_json = {"summary":summary[0]}
sum_out.append(sum_json)
with open(f'{uid}-sum.json', 'w') as f:
json_obj=json.dumps(sum_out, indent=4)
f.write(json_obj)
f.close()
upload_file(
path_or_fileobj =f"{uid}-sum.json",
path_in_repo = f"summary/{filename}-summary.json",
repo_id =f"{username}/{dataset_name}",
repo_type = "dataset",
token=token,
)
prompt = question_generate(output, history)
return prompt, history, summary[0],json_obj,json_hist
with gr.Blocks() as iface:
gr.HTML("""<center><h1>Chat Roulette</h1><br><h3>This chatbot will respond to itself with additional questions</h3></center>""")
#chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
chatbot=gr.Chatbot()
msg = gr.Textbox()
with gr.Row():
submit_b = gr.Button()
stop_b = gr.Button("Stop")
clear = gr.ClearButton([msg, chatbot])
sumbox=gr.Textbox("Summary", max_lines=100)
with gr.Column():
sum_out_box=gr.JSON(label="Summaries")
hist_out_box=gr.JSON(label="History")
sub_b = submit_b.click(generate, [msg,chatbot],[msg,chatbot,sumbox,sum_out_box,hist_out_box])
sub_e = msg.submit(generate, [msg, chatbot], [msg, chatbot,sumbox,sum_out_box,hist_out_box])
stop_b.click(None,None,None, cancels=[sub_b,sub_e])
iface.queue(default_concurrency_limit=10).launch()
|