File size: 1,998 Bytes
5b22af7
8a18ce0
 
 
 
5b22af7
8a18ce0
5b22af7
 
8a18ce0
5b22af7
8a18ce0
5fffa7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a18ce0
5fffa7e
8a18ce0
5fffa7e
 
 
 
8a18ce0
5fffa7e
8a18ce0
5fffa7e
 
 
 
 
8a18ce0
5fffa7e
8a18ce0
5fffa7e
 
 
 
 
 
 
 
 
5b22af7
5fffa7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
---
title: RAG Pedagogical Demo
emoji: πŸŽ“
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
---

# πŸŽ“ RAG Pedagogical Demo

An interactive educational application to learn about Retrieval Augmented Generation (RAG) systems.

## What is RAG?

Retrieval Augmented Generation (RAG) combines information retrieval with language generation to create more accurate and grounded AI responses. Instead of relying solely on a language model's training data, RAG systems:

1. **Retrieve** relevant information from a document corpus
2. **Augment** the query with this retrieved context
3. **Generate** an answer based on both the query and the retrieved information

## Features

- πŸ“š **Upload your own PDFs** or use the default corpus
- πŸ”§ **Configure retrieval parameters**: embedding models, chunk size, top-k, similarity threshold
- πŸ€– **Configure generation parameters**: LLM selection, temperature, max tokens
- πŸ“Š **Visualize the process**: see retrieved chunks, similarity scores, and prompts
- 🌍 **Bilingual interface**: English and French

## How to Use

1. **Corpus Tab**: Upload a PDF or use the default corpus about RAG
2. **Retrieval Tab**: Choose embedding model and retrieval parameters
3. **Generation Tab**: Select language model and generation settings
4. **Query Tab**: Ask questions and see how RAG works!

## Educational Value

This demo helps you understand:
- How documents are processed and chunked
- How semantic search retrieves relevant information
- How context is provided to language models
- How different parameters affect the results

Perfect for students, educators, and anyone curious about modern AI systems!

## Technology

- **Framework**: Gradio
- **Embeddings**: Sentence Transformers
- **Vector Store**: FAISS
- **LLMs**: HuggingFace Inference API
- **Infrastructure**: HuggingFace ZeroGPU

---

*Note: This application runs on ZeroGPU. Initial requests may take longer as models are loaded.*