Spaces:
Sleeping
Sleeping
File size: 1,998 Bytes
5b22af7 8a18ce0 5b22af7 8a18ce0 5b22af7 8a18ce0 5b22af7 8a18ce0 5fffa7e 8a18ce0 5fffa7e 8a18ce0 5fffa7e 8a18ce0 5fffa7e 8a18ce0 5fffa7e 8a18ce0 5fffa7e 8a18ce0 5fffa7e 5b22af7 5fffa7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
---
title: RAG Pedagogical Demo
emoji: π
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 4.44.0
app_file: app.py
pinned: false
license: mit
---
# π RAG Pedagogical Demo
An interactive educational application to learn about Retrieval Augmented Generation (RAG) systems.
## What is RAG?
Retrieval Augmented Generation (RAG) combines information retrieval with language generation to create more accurate and grounded AI responses. Instead of relying solely on a language model's training data, RAG systems:
1. **Retrieve** relevant information from a document corpus
2. **Augment** the query with this retrieved context
3. **Generate** an answer based on both the query and the retrieved information
## Features
- π **Upload your own PDFs** or use the default corpus
- π§ **Configure retrieval parameters**: embedding models, chunk size, top-k, similarity threshold
- π€ **Configure generation parameters**: LLM selection, temperature, max tokens
- π **Visualize the process**: see retrieved chunks, similarity scores, and prompts
- π **Bilingual interface**: English and French
## How to Use
1. **Corpus Tab**: Upload a PDF or use the default corpus about RAG
2. **Retrieval Tab**: Choose embedding model and retrieval parameters
3. **Generation Tab**: Select language model and generation settings
4. **Query Tab**: Ask questions and see how RAG works!
## Educational Value
This demo helps you understand:
- How documents are processed and chunked
- How semantic search retrieves relevant information
- How context is provided to language models
- How different parameters affect the results
Perfect for students, educators, and anyone curious about modern AI systems!
## Technology
- **Framework**: Gradio
- **Embeddings**: Sentence Transformers
- **Vector Store**: FAISS
- **LLMs**: HuggingFace Inference API
- **Infrastructure**: HuggingFace ZeroGPU
---
*Note: This application runs on ZeroGPU. Initial requests may take longer as models are loaded.*
|