File size: 2,927 Bytes
3c3eabb
 
 
 
 
ac2cf21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edce2eb
ac2cf21
 
 
 
 
 
edce2eb
ac2cf21
edce2eb
ac2cf21
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edce2eb
ac2cf21
 
 
 
 
3c3eabb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import gradio as gr

from transformers import GPT2Tokenizer, AutoModelForCausalLM
import numpy as np


MODEL_NAME = "gpt2"


if __name__ == "__main__":
    # Define your model and your tokenizer
    tokenizer = GPT2Tokenizer.from_pretrained(MODEL_NAME)
    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
    if tokenizer.pad_token_id is None:
        tokenizer.pad_token_id = tokenizer.eos_token_id
        model.config.pad_token_id = model.config.eos_token_id

    # Define your color-coding labels; if prob > x, then label = y; Sorted in descending probability order!
    probs_to_label = [
        (0.1, "p >= 10%"),
        (0.01, "p >= 1%"),
        (1e-20, "p < 1%"),
    ]

    label_to_color = {
        "p >= 10%": "green",
        "p >= 1%": "yellow",
        "p < 1%": "red"
    }

    def get_tokens_and_labels(prompt):
        """
        Given the prompt (text), return a list of tuples (decoded_token, label)
        """
        inputs = tokenizer([prompt], return_tensors="pt")
        outputs = model.generate(
            **inputs, max_new_tokens=50, return_dict_in_generate=True, output_scores=True, do_sample=True
        )
        # Important: don't forget to set `normalize_logits=True` to obtain normalized probabilities (i.e. sum(p) = 1)
        transition_scores = model.compute_transition_scores(outputs.sequences, outputs.scores, normalize_logits=True)
        transition_proba = np.exp(transition_scores)
        # We only have scores for the generated tokens, so pop out the prompt tokens
        input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
        generated_tokens = outputs.sequences[:, input_length:]

        # Initialize the highlighted output with the prompt, which will have no color label
        highlighted_out = [(tokenizer.decode(token), None) for token in inputs.input_ids]
        # Get the (decoded_token, label) pairs for the generated tokens
        for token, proba in zip(generated_tokens[0], transition_proba[0]):
            this_label = None
            assert 0. <= proba <= 1.0
            for min_proba, label in probs_to_label:
                if proba >= min_proba:
                    this_label = label
                    break
            highlighted_out.append((tokenizer.decode(token), this_label))

        return highlighted_out

    demo = gr.Blocks()
    with demo:
        gr.Markdown(
            """
            # Foo Bar
            """
        )

        prompt = gr.Textbox(label="Prompt", lines=3, value="Today is")
        highlighted_text = gr.HighlightedText(
            label="Highlighted generation",
            combine_adjacent=True,
            show_legend=True,
        ).style(color_map=label_to_color)
        button = gr.Button(f"Generate with {MODEL_NAME}")

        button.click(get_tokens_and_labels, inputs=prompt, outputs=highlighted_text)


if __name__ == "__main__":
    demo.launch()