File size: 18,257 Bytes
aeba71c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
import math
import pdb

import torch
from torch import nn
import torch.nn.functional as F
from vit_pytorch import ViT
from tqdm import tqdm
from utils import *


class Sampler:
    def __init__(self, device, mask_ind, emb_f, batch_size, seq_len, channel, fix_mode, timesteps, fixed_frame, **kwargs):
        self.device = device
        self.mask_ind = mask_ind
        self.emb_f = emb_f
        self.batch_size = batch_size
        self.seq_len = seq_len
        self.channel = channel
        self.fix_mode = fix_mode
        self.timesteps = timesteps
        self.fixed_frame = fixed_frame
        self.get_scheduler()

    def set_dataset_and_model(self, dataset, model):
        self.dataset = dataset
        if dataset.load_scene:
            self.grid = dataset.create_meshgrid(batch_size=self.batch_size).to(self.device)
        self.model = model


    def get_scheduler(self):
        betas = linear_beta_schedule(timesteps=self.timesteps)

        # define alphas
        alphas = 1. - betas
        alphas_cumprod = torch.cumprod(alphas, axis=0)
        alphas_cumprod_prev = F.pad(alphas_cumprod[:-1], (1, 0), value=1.0)
        self.sqrt_recip_alphas = torch.sqrt(1.0 / alphas)

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = torch.sqrt(alphas_cumprod)
        self.sqrt_one_minus_alphas_cumprod = torch.sqrt(1. - alphas_cumprod)

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        self.posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        self.betas = betas

    def q_sample(self, x_start, t, noise):
        if noise is None:
            noise = torch.randn_like(x_start)
        sqrt_alphas_cumprod_t = extract(self.sqrt_alphas_cumprod, t, x_start.shape)
        sqrt_one_minus_alphas_cumprod_t = extract(
            self.sqrt_one_minus_alphas_cumprod, t, x_start.shape
        )
        return sqrt_alphas_cumprod_t * x_start + sqrt_one_minus_alphas_cumprod_t * noise


    def p_losses(self, x_start, obj_points, mat, scene_flag, mask, t, action_label, noise=None, loss_type='huber'):
        if noise is None:
            noise = torch.randn_like(x_start)

        noise[mask] = 0.

        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)

        if self.dataset.load_scene:
            with torch.no_grad():
                x_orig = transform_points(self.dataset.denormalize_torch(x_noisy), mat)
                mat_for_query = mat.clone()
                target_ind = self.mask_ind if self.mask_ind != -1 else 0
                mat_for_query[:, :3, 3] = x_orig[:, self.emb_f, target_ind * 3: target_ind * 3 + 3]
                mat_for_query[:, 1, 3] = 0
                query_points = transform_points(self.grid, mat_for_query)

                occ = self.dataset.get_occ_for_points(query_points, obj_points, scene_flag)
                nb_voxels = self.dataset.nb_voxels
                occ = occ.reshape(-1, nb_voxels, nb_voxels, nb_voxels).float()

                # import trimesh
                # print(mat[0])
                # grid_np = self.grid[0].detach().cpu().numpy().reshape((-1, 3))
                # occ_np = occ[0].detach().cpu().numpy().reshape((-1))
                # points = grid_np[occ_np > 0.5]
                # pcd_trimesh = trimesh.PointCloud(vertices=points)
                # scene = trimesh.Scene([pcd_trimesh, trimesh.creation.axis(origin_color=[0, 0, 0])])
                # scene.show()

                occ = occ.permute(0, 2, 1, 3)
        else:
            occ = None

        # x_noisy = torch.cat([x_noisy, occ], dim=-1).detach()

        predicted_noise = self.model(x_noisy, occ, t, action_label, mask)

        mask_inv = torch.logical_not(mask)

        if loss_type == 'l1':
            loss = F.l1_loss(noise[mask_inv], predicted_noise[mask_inv])
        elif loss_type == 'l2':
            loss = F.mse_loss(noise[mask_inv], predicted_noise[mask_inv])
        elif loss_type == "huber":
            loss = F.smooth_l1_loss(noise[mask_inv], predicted_noise[mask_inv])
        else:
            raise NotImplementedError()

        return loss

    @torch.no_grad()
    def p_sample_loop(self, fixed_points, obj_locs, mat, scene, goal, action_label):
        device = next(self.model.parameters()).device
        shape = (self.batch_size, self.seq_len, self.channel)
        points = torch.randn(shape, device=device)  # + torch.tensor([0., 0.3, 0.] * 22, device=device)

        if self.fix_mode:
            self.set_fixed_points(points, goal, fixed_points, mat, joint_id=self.mask_ind, fix_mode=True, fix_goal=True)
        imgs = []
        occs = []

        if self.dataset.load_scene:
            x_orig = transform_points(self.dataset.denormalize_torch(points), mat)
            mat_for_query = mat.clone()
            target_ind = self.mask_ind if self.mask_ind != -1 else 0
            mat_for_query[:, :3, 3] = x_orig[:, self.emb_f, target_ind * 3: target_ind * 3 + 3]
            mat_for_query[:, 1, 3] = 0
            query_points = transform_points(self.grid, mat_for_query)
            occ = self.dataset.get_occ_for_points(query_points, obj_locs, scene)
            nb_voxels = self.dataset.nb_voxels
            occ = occ.reshape(-1, nb_voxels, nb_voxels, nb_voxels).float()

            # import trimesh
            # print('\n', mat[0])
            # grid_np = self.grid[0].detach().cpu().numpy().reshape((-1, 3))
            # occ_np = occ[0].detach().cpu().numpy().reshape((-1))
            # pointcloud = grid_np[occ_np > 0.5]
            # pcd_trimesh = trimesh.PointCloud(vertices=pointcloud)
            # np.save('/home/jiangnan/SyntheticHSI/Paper/Teaser/occ.npy', pointcloud)
            # scene = trimesh.Scene([pcd_trimesh, trimesh.creation.axis(origin_color=[0, 0, 0])])
            # scene.show()

            occ = occ.permute(0, 2, 1, 3)

        else:
            occ = None

        for i in tqdm(reversed(range(0, self.timesteps)), desc='sampling loop time step', total=self.timesteps):
            model_used = self.model
            # if s < 3 or (s == 3 and i < 5) or i < 3:
            #     model_used = model_fix
            # else:
            #     model_used = model
            points, occ = self.p_sample(model_used, points, fixed_points, goal, None, mat, occ,
                                   torch.full((self.batch_size,), i, device=device, dtype=torch.long), i, action_label, self.mask_ind,
                                   self.emb_f, self.fix_mode)
            if self.fix_mode:
                self.set_fixed_points(points, goal, fixed_points, mat, joint_id=self.mask_ind, fix_mode=True, fix_goal=True)
            # set_fixed_points(points, goal, mat, joint_id=mask_ind)
            # # t = torch.ones(b, device=device, dtype=torch.int64) * i
            # if fixed_points is not None:
            #     points[:, :fixed_points.shape[1], :] = fixed_points # q_sample(fixed_points, t, None, sqrt_alphas_cumprod, sqrt_one_minus_alphas_cumprod)

            points_orig = transform_points(self.dataset.denormalize_torch(points), mat)
            imgs.append(points_orig)
            if occ is not None:
                occs.append(occ.cpu().numpy())
        return imgs, occs

    @torch.no_grad()
    def p_sample(self, model, x, fixed_points, goal, obj_points, mat, occ, t, t_index, action_label, mask_ind, emb_f,
                 fix_mode, no_scene=False):
        betas_t = extract(self.betas, t, x.shape)
        sqrt_one_minus_alphas_cumprod_t = extract(
            self.sqrt_one_minus_alphas_cumprod, t, x.shape
        )
        sqrt_recip_alphas_t = extract(self.sqrt_recip_alphas, t, x.shape)

        # Equation 11 in the paper
        # Use our model (noise predictor) to predict the mean


        # joints_orig = transform_points(synhsi_dataset.denormalize_torch(x), mat)
        # occ = synhsi_dataset.get_occ_for_points(joints_orig, obj_points, scene)
        # x_occ = torch.cat([x, occ], dim=-1).detach()

        model_mean = sqrt_recip_alphas_t * (
                x - betas_t * model(x, occ, t, action_label, mask=None) / sqrt_one_minus_alphas_cumprod_t
        )
        # model_mean_noact = sqrt_recip_alphas_t * (
        #         x - betas_t * model(x, occ, t, action_label, mask=None, no_action=True) / sqrt_one_minus_alphas_cumprod_t
        # )
        # model_mean = model_mean_noact + (model_mean - model_mean_noact) * 10
        if not fix_mode:
            self.set_fixed_points(model_mean, goal, fixed_points, mat, joint_id=mask_ind, fix_mode=True, fix_goal=False)

        if t_index == 0:
            return model_mean, occ
        else:
            posterior_variance_t = extract(self.posterior_variance, t, x.shape)
            noise = torch.randn_like(x)
            # Algorithm 2 line 4:
            return model_mean + torch.sqrt(posterior_variance_t) * noise, occ

        # Algorithm 2 (including returning all images)


    def set_fixed_points(self, img, goal, fixed_points, mat, joint_id=0, fix_mode=False, fix_goal=True):
        # if joint_id != 0:
        #     goal_len = 2
        goal_len = goal.shape[1]
        # goal_batch = goal.reshape(1, 1, 3).repeat(img.shape[0], 1, 1)
        goal = self.dataset.normalize_torch(transform_points(goal, torch.inverse(mat)))
        # img[:, -1, joint_id * 3: joint_id * 3 + 3] = goal_batch[:, 0]
        if fix_goal:
            img[:, -goal_len:, joint_id * 3] = goal[:, :, 0]
            if joint_id != 0:
                img[:, -goal_len:, joint_id * 3 + 1] = goal[:, :, 1]
            img[:, -goal_len:, joint_id * 3 + 2] = goal[:, :, 2]

        if fixed_points is not None and fix_mode:
            img[:, :fixed_points.shape[1], :] = fixed_points


class Unet(nn.Module):
    def __init__(
            self,
            dim_model,
            num_heads,
            num_layers,
            dropout_p,
            dim_input,
            dim_output,
            nb_voxels=None,
            free_p=0.1,
            nb_actions=0,
            ac_type='',
            no_scene=False,
            no_action=False,
            **kwargs
    ):
        super().__init__()

        # INFO
        self.model_type = "Transformer"
        self.dim_model = dim_model
        self.nb_actions = nb_actions
        self.ac_type = ac_type
        self.no_scene = no_scene
        self.no_action = no_action

        # LAYERS
        if not no_scene:
            self.scene_embedding = ViT(
                image_size=nb_voxels,
                patch_size=nb_voxels // 4,
                channels=nb_voxels,
                num_classes=dim_model,
                dim=1024,
                depth=6,
                heads=16,
                mlp_dim=2048,
                dropout=0.1,
                emb_dropout=0.1
            )
        self.free_p = free_p
        self.positional_encoder = PositionalEncoding(
            dim_model=dim_model, dropout_p=dropout_p, max_len=5000
        )
        self.embedding_input = nn.Linear(dim_input, dim_model)
        self.embedding_output = nn.Linear(dim_output, dim_model)

        # self.embedding_action = nn.Parameter(torch.randn(16, dim_model))

        if not no_action and nb_actions > 0:
            if self.ac_type in ['last_add_first_token', 'last_new_token']:
                self.embedding_action = ActionTransformerEncoder(action_number=nb_actions,
                                                                 dim_model=dim_model,
                                                                 nhead=num_heads // 2,
                                                                 num_layers=num_layers,
                                                                 dim_feedforward=dim_model,
                                                                 dropout_p=dropout_p,
                                                                 activation="gelu")
            elif self.ac_type in ['all_add_token']:
                self.embedding_action = nn.Sequential(
                    nn.Linear(nb_actions, dim_model),
                    nn.SiLU(inplace=False),
                    nn.Linear(dim_model, dim_model),
                )

        encoder_layer = nn.TransformerEncoderLayer(d_model=dim_model,
                                                   nhead=num_heads,
                                                   dim_feedforward=dim_model,
                                                   dropout=dropout_p,
                                                   activation="gelu")

        self.transformer = nn.TransformerEncoder(encoder_layer,
                                                 num_layers=num_layers
        )
        # self.out = nn.Linear(dim_model, dim_output)

        self.out = nn.Linear(dim_model, dim_output)

        self.embed_timestep = TimestepEmbedder(self.dim_model, self.positional_encoder)

    def forward(self, x, cond, timesteps, action, mask, no_action=None):

        #TODO ActionFlag
        # action[action[:, 0] != 0., 0] = 1.

        t_emb = self.embed_timestep(timesteps)  # [1, b, d]

        if self.no_scene:
            scene_emb = torch.zeros_like(t_emb)
        else:
            scene_emb = self.scene_embedding(cond).reshape(-1, 1, self.dim_model)

        if self.no_action or self.nb_actions == 0:
            action_emb = torch.zeros_like(t_emb)
        else:
            if self.ac_type in ['all_add_token']:
                action_emb = self.embedding_action(action)
            elif self.ac_type in ['last_add_first_token', 'last_new_token']:
                action_emb = self.embedding_action(action)
            else:
                raise NotImplementedError

        t_emb = t_emb.permute(1, 0, 2)

        free_ind = torch.rand(scene_emb.shape[0]).to(scene_emb.device) < self.free_p
        scene_emb[free_ind] = 0.
        # if mask is not None:
        #     x[free_ind][:, mask[0]] = 0.

        if self.ac_type in ['last_add_first_token', 'last_new_token']:
            action_emb[free_ind] = 0.
        scene_emb = scene_emb.permute(1, 0, 2)
        action_emb = action_emb.permute(1, 0, 2)

        if self.ac_type in ['all_add_token', 'last_new_token']:
            emb = t_emb + scene_emb
        elif self.ac_type in ['last_add_first_token']:
            emb = t_emb + scene_emb + action_emb

        x = x.permute(1, 0, 2)
        x = self.embedding_input(x) * math.sqrt(self.dim_model)
        if self.ac_type in ['all_add_token', 'last_add_first_token']:
            x = torch.cat((emb, x), dim=0)
        elif self.ac_type in ['last_new_token']:
            x = torch.cat((emb, action_emb, x), dim=0)

        if self.ac_type in ['all_add_token']:
            x[1:] = x[1:] + action_emb

        x = self.positional_encoder(x)
        x = self.transformer(x)
        if self.ac_type in ['all_add_token', 'last_add_first_token']:
            output = self.out(x)[1:]
        elif self.ac_type in ['last_new_token']:
            output = self.out(x)[2:]
        output = output.permute(1, 0, 2)

        return output


class PositionalEncoding(nn.Module):
    def __init__(self, dim_model, dropout_p, max_len):
        super().__init__()
        # Modified version from: https://pytorch.org/tutorials/beginner/transformer_tutorial.html
        # max_len determines how far the position can have an effect on a token (window)

        # Info
        self.dropout = nn.Dropout(dropout_p)

        # Encoding - From formula
        pos_encoding = torch.zeros(max_len, dim_model)
        positions_list = torch.arange(0, max_len, dtype=torch.float).reshape(-1, 1)  # 0, 1, 2, 3, 4, 5
        division_term = torch.exp(
            torch.arange(0, dim_model, 2).float() * (-math.log(10000.0)) / dim_model)  # 1000^(2i/dim_model)

        # PE(pos, 2i) = sin(pos/1000^(2i/dim_model))
        pos_encoding[:, 0::2] = torch.sin(positions_list * division_term)

        # PE(pos, 2i + 1) = cos(pos/1000^(2i/dim_model))
        pos_encoding[:, 1::2] = torch.cos(positions_list * division_term)

        # Saving buffer (same as parameter without gradients needed)
        pos_encoding = pos_encoding.unsqueeze(0).transpose(0, 1)
        self.register_buffer("pos_encoding", pos_encoding)

    def forward(self, token_embedding: torch.tensor) -> torch.tensor:
        # Residual connection + pos encoding
        return self.dropout(token_embedding + self.pos_encoding[:token_embedding.size(0), :])


class TimestepEmbedder(nn.Module):
    def __init__(self, latent_dim, sequence_pos_encoder):
        super().__init__()
        self.latent_dim = latent_dim
        self.sequence_pos_encoder = sequence_pos_encoder

        time_embed_dim = self.latent_dim
        self.time_embed = nn.Sequential(
            nn.Linear(self.latent_dim, time_embed_dim),
            nn.SiLU(inplace=False),
            nn.Linear(time_embed_dim, time_embed_dim),
        )

    def forward(self, timesteps):
        return self.time_embed(self.sequence_pos_encoder.pos_encoding[timesteps])#.permute(1, 0, 2)


class ActionTransformerEncoder(nn.Module):
    def __init__(self,
                 action_number,
                 dim_model,
                 nhead,
                 num_layers,
                 dim_feedforward,
                 dropout_p,
                 activation="gelu") -> None:
        super().__init__()
        self.positional_encoder = PositionalEncoding(
            dim_model=dim_model, dropout_p=dropout_p, max_len=5000
        )
        self.input_embedder = nn.Linear(action_number, dim_model)
        encoder_layer = nn.TransformerEncoderLayer(d_model=dim_model,
                                                    nhead=nhead,
                                                    dim_feedforward=dim_feedforward,
                                                    dropout=dropout_p,
                                                    activation=activation)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer,
                                                 num_layers=num_layers
        )

    def forward(self, x):
        x = x.permute(1, 0, 2)
        x = self.input_embedder(x)
        x = self.positional_encoder(x)
        x = self.transformer_encoder(x)
        x = x.permute(1, 0, 2)
        x = torch.mean(x, dim=1, keepdim=True)
        return x