File size: 4,928 Bytes
4bb060d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import math
import os
from pathlib import Path

from cleanfid.inception_torchscript import InceptionV3W
import clip
from resize_right import resize
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from tqdm.auto import trange

from . import utils


class InceptionV3FeatureExtractor(nn.Module):
    def __init__(self, device='cpu'):
        super().__init__()
        path = Path(os.environ.get('XDG_CACHE_HOME', Path.home() / '.cache')) / 'k-diffusion'
        url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt'
        digest = 'f58cb9b6ec323ed63459aa4fb441fe750cfe39fafad6da5cb504a16f19e958f4'
        utils.download_file(path / 'inception-2015-12-05.pt', url, digest)
        self.model = InceptionV3W(str(path), resize_inside=False).to(device)
        self.size = (299, 299)

    def forward(self, x):
        if x.shape[2:4] != self.size:
            x = resize(x, out_shape=self.size, pad_mode='reflect')
        if x.shape[1] == 1:
            x = torch.cat([x] * 3, dim=1)
        x = (x * 127.5 + 127.5).clamp(0, 255)
        return self.model(x)


class CLIPFeatureExtractor(nn.Module):
    def __init__(self, name='ViT-L/14@336px', device='cpu'):
        super().__init__()
        self.model = clip.load(name, device=device)[0].eval().requires_grad_(False)
        self.normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
                                              std=(0.26862954, 0.26130258, 0.27577711))
        self.size = (self.model.visual.input_resolution, self.model.visual.input_resolution)

    def forward(self, x):
        if x.shape[2:4] != self.size:
            x = resize(x.add(1).div(2), out_shape=self.size, pad_mode='reflect').clamp(0, 1)
        x = self.normalize(x)
        x = self.model.encode_image(x).float()
        x = F.normalize(x) * x.shape[1] ** 0.5
        return x


def compute_features(accelerator, sample_fn, extractor_fn, n, batch_size):
    n_per_proc = math.ceil(n / accelerator.num_processes)
    feats_all = []
    try:
        for i in trange(0, n_per_proc, batch_size, disable=not accelerator.is_main_process):
            cur_batch_size = min(n - i, batch_size)
            samples = sample_fn(cur_batch_size)[:cur_batch_size]
            feats_all.append(accelerator.gather(extractor_fn(samples)))
    except StopIteration:
        pass
    return torch.cat(feats_all)[:n]


def polynomial_kernel(x, y):
    d = x.shape[-1]
    dot = x @ y.transpose(-2, -1)
    return (dot / d + 1) ** 3


def squared_mmd(x, y, kernel=polynomial_kernel):
    m = x.shape[-2]
    n = y.shape[-2]
    kxx = kernel(x, x)
    kyy = kernel(y, y)
    kxy = kernel(x, y)
    kxx_sum = kxx.sum([-1, -2]) - kxx.diagonal(dim1=-1, dim2=-2).sum(-1)
    kyy_sum = kyy.sum([-1, -2]) - kyy.diagonal(dim1=-1, dim2=-2).sum(-1)
    kxy_sum = kxy.sum([-1, -2])
    term_1 = kxx_sum / m / (m - 1)
    term_2 = kyy_sum / n / (n - 1)
    term_3 = kxy_sum * 2 / m / n
    return term_1 + term_2 - term_3


@utils.tf32_mode(matmul=False)
def kid(x, y, max_size=5000):
    x_size, y_size = x.shape[0], y.shape[0]
    n_partitions = math.ceil(max(x_size / max_size, y_size / max_size))
    total_mmd = x.new_zeros([])
    for i in range(n_partitions):
        cur_x = x[round(i * x_size / n_partitions):round((i + 1) * x_size / n_partitions)]
        cur_y = y[round(i * y_size / n_partitions):round((i + 1) * y_size / n_partitions)]
        total_mmd = total_mmd + squared_mmd(cur_x, cur_y)
    return total_mmd / n_partitions


class _MatrixSquareRootEig(torch.autograd.Function):
    @staticmethod
    def forward(ctx, a):
        vals, vecs = torch.linalg.eigh(a)
        ctx.save_for_backward(vals, vecs)
        return vecs @ vals.abs().sqrt().diag_embed() @ vecs.transpose(-2, -1)

    @staticmethod
    def backward(ctx, grad_output):
        vals, vecs = ctx.saved_tensors
        d = vals.abs().sqrt().unsqueeze(-1).repeat_interleave(vals.shape[-1], -1)
        vecs_t = vecs.transpose(-2, -1)
        return vecs @ (vecs_t @ grad_output @ vecs / (d + d.transpose(-2, -1))) @ vecs_t


def sqrtm_eig(a):
    if a.ndim < 2:
        raise RuntimeError('tensor of matrices must have at least 2 dimensions')
    if a.shape[-2] != a.shape[-1]:
        raise RuntimeError('tensor must be batches of square matrices')
    return _MatrixSquareRootEig.apply(a)


@utils.tf32_mode(matmul=False)
def fid(x, y, eps=1e-8):
    x_mean = x.mean(dim=0)
    y_mean = y.mean(dim=0)
    mean_term = (x_mean - y_mean).pow(2).sum()
    x_cov = torch.cov(x.T)
    y_cov = torch.cov(y.T)
    eps_eye = torch.eye(x_cov.shape[0], device=x_cov.device, dtype=x_cov.dtype) * eps
    x_cov = x_cov + eps_eye
    y_cov = y_cov + eps_eye
    x_cov_sqrt = sqrtm_eig(x_cov)
    cov_term = torch.trace(x_cov + y_cov - 2 * sqrtm_eig(x_cov_sqrt @ y_cov @ x_cov_sqrt))
    return mean_term + cov_term