File size: 6,199 Bytes
c52709f c1985cc c52709f 83233f5 c52709f 1df5013 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f 83233f5 c52709f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Run with reload mode:
# gradio app03-chatRagLcelMem.py
import os
import gradio as gr
from operator import itemgetter
# Langchain
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableParallel,RunnablePassthrough,RunnableLambda
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string
from langchain.prompts.prompt import PromptTemplate
from langchain.schema import format_document
from langchain.memory import ConversationBufferMemory
# HuggingFace
from langchain_community.embeddings import HuggingFaceEmbeddings
# GeminiPro
from langchain_google_genai import ChatGoogleGenerativeAI
# Groq
from langchain_groq import ChatGroq
# Pinecone vector database
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from dotenv import load_dotenv
load_dotenv()
# print('EMBEDDINGS_MODEL', os.getenv("EMBEDDINGS_MODEL"))
setid = "global"
def pipeLog(x):
print("***", x)
return x
embeddings = HuggingFaceEmbeddings(model_name=os.getenv("EMBEDDINGS_MODEL"))
# OpenAI
# model = ChatOpenAI(temperature=0.0)
# Gemini
# model = ChatGoogleGenerativeAI(
# model="gemini-pro", temperature=0.1, convert_system_message_to_human=True
# )
# Groq
# llama2-70b-4096 (4k), mixtral-8x7b-32768 (32k)
model = ChatGroq(model_name='mixtral-8x7b-32768')
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
index = pc.Index(setid)
vectorstore = PineconeVectorStore(index, embeddings, "text")
retriever = vectorstore.as_retriever(kwargs={"k":5}) # Find top-5 documents
template_no_history = """Answer the question based only on the following context:
{context}
Question: {question}
"""
ANSWER_PROMPT = ChatPromptTemplate.from_template(template_no_history)
template_with_history = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
Chat History:
{chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = ChatPromptTemplate.from_template(template_with_history)
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
def _combine_documents(docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"):
doc_strings = [format_document(doc, document_prompt) for doc in docs]
return document_separator.join(doc_strings)
# setup_and_retrieval = RunnableParallel(
# {"context": retriever, "question": RunnablePassthrough()}
# )
# def format_docs(docs):
# return "\n\n".join(doc.page_content for doc in docs)
# rag_chain_from_docs = (
# RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
# | PROMPT_NH
# | model
# | StrOutputParser()
# )
# rag_chain_with_source = RunnableParallel(
# {"context": retriever, "question": RunnablePassthrough()}
# ).assign(answer=rag_chain_from_docs)
# def rag_query(question: str, history: list[list[str]]):
# if len(history)==0:
# # chain = setup_and_retrieval | PROMPT_NH | model
# # response = chain.invoke(question)
# response = rag_chain_with_source.invoke(question)
# sources = [ doc.metadata['source'] for doc in response['context'] ]
# print(response, '\n', sources)
# return response['answer'] # FAILS!!!
# else:
# chat_history = ""
# for l in history:
# chat_history += " : ".join(l)
# chat_history += "\n"
# chain = (
# { "chat_history": itemgetter('chat_history'), "question": itemgetter('question') }
# | PROMPT_WH
# | pipeLog
# | model
# )
# response = chain.invoke({ "chat_history": chat_history, "question": question })
# return response.content
# ----------------------------------------
# Prepare the chain to run the queries
# Store chat history
memory = ConversationBufferMemory(return_messages=True, output_key="answer", input_key="question")
# Load chat history into 'memory' key
loaded_memory = RunnablePassthrough.assign(
chat_history=RunnableLambda(memory.load_memory_variables) | itemgetter("history"),
)
# Generate a standalone question
standalone_question = {
"standalone_question": {
"question": lambda x: x["question"],
"chat_history": lambda x: get_buffer_string(x["chat_history"]),
}
| CONDENSE_QUESTION_PROMPT
| model
| StrOutputParser(),
}
# Retrieve related documents
retrieved_documents = {
"docs": itemgetter("standalone_question") | retriever,
"question": lambda x: x["standalone_question"],
}
# Construct the inputs for the final prompt
final_inputs = {
"context": lambda x: _combine_documents(x["docs"]),
"question": itemgetter("question"),
}
# And finally, we do the part that returns the answers
answer = {
"answer": final_inputs | ANSWER_PROMPT | model,
"docs": itemgetter("docs"),
}
# The complete chain
final_chain = loaded_memory | standalone_question | retrieved_documents | answer
def pipeLog(s:str, x):
print(s, x)
return x
pipe_a = RunnableLambda(lambda x: pipeLog("a:",x))
pipe_b = RunnableLambda(lambda x: pipeLog("b:",x))
def rag_query(question: str, history: list[list[str]]) -> str:
"""Run a RAG query using own history, not the gradio history"""
inputs = { 'question':question }
response = final_chain.invoke(inputs)
# print(response)
memory.save_context(inputs, {"answer": response["answer"].content})
# sources = [ doc.metadata['source'] for doc in response['context'] ]
# print(response, '\n', sources)
return response['answer'].content
def test_query(question):
print('QUESTION:', question)
answer = rag_query(question, None)
print('ANSWER: ', answer, '\n')
# test_query("What is the capital of France?")
# test_query("What is a Blockchain?")
# test_query("What is it useful for?")
gr.ChatInterface(
rag_query,
title="RAG Chatbot demo",
description="A chatbot doing Retrieval Augmented Generation, backed by a Pinecone vector database"
).launch()
|