File size: 5,558 Bytes
b09fe39 31125fb b09fe39 676ddb6 b09fe39 de409d0 31125fb de409d0 b09fe39 f2a5478 b09fe39 1df5013 b09fe39 f2a5478 b09fe39 f2a5478 b09fe39 31125fb b09fe39 31125fb b09fe39 31125fb b09fe39 31125fb b09fe39 676ddb6 b09fe39 676ddb6 b09fe39 676ddb6 b09fe39 f2a5478 58c1f05 b09fe39 de409d0 b09fe39 78aa10a 31125fb b09fe39 de409d0 b09fe39 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# Run with reload mode:
# gradio app02-chatRagLcel.py
import os
import gradio as gr
from operator import itemgetter
# Langchain
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableParallel,RunnablePassthrough,RunnableLambda
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import AIMessage, HumanMessage
# HuggingFace
from langchain_community.embeddings import HuggingFaceEmbeddings
# GeminiPro
from langchain_google_genai import ChatGoogleGenerativeAI
# Groq
from langchain_groq import ChatGroq
# Pinecone vector database
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore
from dotenv import load_dotenv
load_dotenv()
# print('EMBEDDINGS_MODEL', os.getenv("EMBEDDINGS_MODEL"))
setid = "global"
embeddings = HuggingFaceEmbeddings(model_name=os.getenv("EMBEDDINGS_MODEL"))
# OpenAI
# model = ChatOpenAI(temperature=0.0)
# Gemini
# model = ChatGoogleGenerativeAI(
# model="gemini-pro", temperature=0.1, convert_system_message_to_human=True
# )
# Groq
# llama2-70b-4096 (4k), mixtral-8x7b-32768 (32k)
model = ChatGroq(model_name='mixtral-8x7b-32768')
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
index = pc.Index(setid)
vectorstore = PineconeVectorStore(index, embeddings, "text")
retriever = vectorstore.as_retriever(kwargs={"k":5}) # Find 5 documents
template_no_history = """Answer the question based only on the following context:
{context}
Question: {question}
"""
PROMPT_NH = ChatPromptTemplate.from_template(template_no_history)
template_with_history = """Given the following conversation history, answer the follow up question:
Chat History:
{chat_history}
Question: {question}
"""
PROMPT_WH = ChatPromptTemplate.from_template(template_with_history)
def pipeLog(x):
print("***", x)
return x
setup_and_retrieval = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
)
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain_from_docs = (
RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
| PROMPT_NH
| model
| StrOutputParser()
)
rag_chain_with_source = RunnableParallel(
{"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)
def rag_query(question: str, history: list[list[str]]):
if len(history)==0:
# chain = setup_and_retrieval | PROMPT_NH | model
# response = chain.invoke(question)
response = rag_chain_with_source.invoke(question)
sources = [ doc.metadata['source'] for doc in response['context'] ]
print(response, '\n', sources)
return response['answer'] # FAILS!!!
else:
chat_history = ""
for l in history:
chat_history += " : ".join(l)
chat_history += "\n"
chain = (
{ "chat_history": itemgetter('chat_history'), "question": itemgetter('question') }
| PROMPT_WH
| pipeLog
| model
)
response = chain.invoke({ "chat_history": chat_history, "question": question })
return response.content
# ----------------------------------------
def pipeLog(s:str, x):
print(s, x)
return x
pipe_a = RunnableLambda(lambda x: pipeLog("a:",x))
pipe_b = RunnableLambda(lambda x: pipeLog("b:",x))
contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""
contextualize_q_prompt = ChatPromptTemplate.from_messages(
[
("system", contextualize_q_system_prompt),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
contextualize_q_chain = contextualize_q_prompt | model | StrOutputParser()
qa_system_prompt = """You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question.
If you don't know the answer, just say that you don't know.
Use three sentences maximum and keep the answer concise.
{context}"""
qa_prompt = ChatPromptTemplate.from_messages(
[
("system", qa_system_prompt),
MessagesPlaceholder(variable_name="chat_history"),
("human", "{question}"),
]
)
def contextualized_question(input: dict):
if input.get("chat_history"):
return contextualize_q_chain
else:
return input["question"]
rag_chain = (
RunnablePassthrough.assign(
context=pipe_b | contextualized_question | retriever | format_docs
)
| qa_prompt
| model
)
rag_chain_with_source = RunnableParallel(
{"xx": pipe_a, "context": itemgetter('question')|retriever, "question": itemgetter('question'), "chat_history": itemgetter('chat_history') }
).assign(answer=rag_chain)
def rag_query_2(question: str, history: list[list[str]]):
response = rag_chain_with_source.invoke({ 'question':question, 'chat_history':history })
print(response)
# sources = [ doc.metadata['source'] for doc in response['context'] ]
# print(response, '\n', sources)
return response['answer'].content
gr.ChatInterface(
rag_query_2,
title="RAG Chatbot demo",
description="A chatbot doing Retrieval Augmented Generation, backed by a Pinecone vector database"
).launch()
|