File size: 5,558 Bytes
b09fe39
31125fb
b09fe39
 
 
 
676ddb6
 
b09fe39
de409d0
 
31125fb
de409d0
b09fe39
 
 
 
 
 
 
f2a5478
 
 
b09fe39
 
 
 
1df5013
 
 
 
b09fe39
 
 
 
 
f2a5478
b09fe39
f2a5478
 
 
 
 
 
 
 
 
 
b09fe39
31125fb
b09fe39
 
31125fb
b09fe39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31125fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b09fe39
 
 
31125fb
 
 
 
 
 
b09fe39
 
 
 
676ddb6
b09fe39
676ddb6
b09fe39
676ddb6
b09fe39
 
f2a5478
58c1f05
b09fe39
de409d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b09fe39
 
78aa10a
 
31125fb
b09fe39
de409d0
b09fe39
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# Run with reload mode:
# gradio app02-chatRagLcel.py

import os
import gradio as gr

from operator import itemgetter

# Langchain
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnableParallel,RunnablePassthrough,RunnableLambda
from langchain_core.output_parsers import StrOutputParser
from langchain_core.messages import AIMessage, HumanMessage

# HuggingFace
from langchain_community.embeddings import HuggingFaceEmbeddings

# GeminiPro
from langchain_google_genai import ChatGoogleGenerativeAI

# Groq
from langchain_groq import ChatGroq

# Pinecone vector database
from pinecone import Pinecone, ServerlessSpec
from langchain_pinecone import PineconeVectorStore

from dotenv import load_dotenv
load_dotenv()
# print('EMBEDDINGS_MODEL', os.getenv("EMBEDDINGS_MODEL"))


setid = "global"

embeddings = HuggingFaceEmbeddings(model_name=os.getenv("EMBEDDINGS_MODEL"))

# OpenAI
# model = ChatOpenAI(temperature=0.0)

# Gemini
# model = ChatGoogleGenerativeAI(
#     model="gemini-pro", temperature=0.1, convert_system_message_to_human=True
# )

# Groq
# llama2-70b-4096 (4k), mixtral-8x7b-32768 (32k)
model = ChatGroq(model_name='mixtral-8x7b-32768')


pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY"))
index = pc.Index(setid)
vectorstore = PineconeVectorStore(index, embeddings, "text")
retriever = vectorstore.as_retriever(kwargs={"k":5})            # Find 5 documents


template_no_history = """Answer the question based only on the following context:
{context}

Question: {question}
"""
PROMPT_NH = ChatPromptTemplate.from_template(template_no_history)

template_with_history = """Given the following conversation history, answer the follow up question:
Chat History:
{chat_history}

Question: {question}
"""
PROMPT_WH = ChatPromptTemplate.from_template(template_with_history)


def pipeLog(x):
    print("***", x)
    return x


setup_and_retrieval = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
)

def format_docs(docs):
    return "\n\n".join(doc.page_content for doc in docs)

rag_chain_from_docs = (
    RunnablePassthrough.assign(context=(lambda x: format_docs(x["context"])))
    | PROMPT_NH
    | model
    | StrOutputParser()
)

rag_chain_with_source = RunnableParallel(
    {"context": retriever, "question": RunnablePassthrough()}
).assign(answer=rag_chain_from_docs)


def rag_query(question: str, history: list[list[str]]):
    if len(history)==0:
        # chain = setup_and_retrieval | PROMPT_NH | model
        # response = chain.invoke(question)
        response = rag_chain_with_source.invoke(question)
        sources = [ doc.metadata['source'] for doc in response['context'] ]
        print(response, '\n', sources)
        return response['answer'] # FAILS!!!
    else:
        chat_history = ""
        for l in history:
            chat_history += " : ".join(l)
            chat_history += "\n"
        chain = (
            { "chat_history": itemgetter('chat_history'), "question": itemgetter('question') }
            | PROMPT_WH 
            | pipeLog
            | model
        )
        response = chain.invoke({ "chat_history": chat_history, "question": question })
        return response.content

# ----------------------------------------


def pipeLog(s:str, x):
    print(s, x)
    return x
pipe_a = RunnableLambda(lambda x: pipeLog("a:",x))
pipe_b = RunnableLambda(lambda x: pipeLog("b:",x))



contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""

contextualize_q_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", contextualize_q_system_prompt),
        MessagesPlaceholder(variable_name="chat_history"),
        ("human", "{question}"),
    ]
)

contextualize_q_chain = contextualize_q_prompt | model | StrOutputParser()




qa_system_prompt = """You are an assistant for question-answering tasks.
Use the following pieces of retrieved context to answer the question.
If you don't know the answer, just say that you don't know.
Use three sentences maximum and keep the answer concise.

{context}"""
qa_prompt = ChatPromptTemplate.from_messages(
    [
        ("system", qa_system_prompt),
        MessagesPlaceholder(variable_name="chat_history"),
        ("human", "{question}"),
    ]
)

def contextualized_question(input: dict):
    if input.get("chat_history"):
        return contextualize_q_chain
    else:
        return input["question"]


rag_chain = (
    RunnablePassthrough.assign(
        context=pipe_b | contextualized_question | retriever | format_docs
    )
    | qa_prompt
    | model
)

rag_chain_with_source = RunnableParallel(
    {"xx": pipe_a, "context": itemgetter('question')|retriever, "question": itemgetter('question'), "chat_history": itemgetter('chat_history') }
).assign(answer=rag_chain)



def rag_query_2(question: str, history: list[list[str]]):
    response = rag_chain_with_source.invoke({ 'question':question, 'chat_history':history })
    print(response)
    # sources = [ doc.metadata['source'] for doc in response['context'] ]
    # print(response, '\n', sources)
    return response['answer'].content







gr.ChatInterface(
    rag_query_2,
    title="RAG Chatbot demo",
    description="A chatbot doing Retrieval Augmented Generation, backed by a Pinecone vector database"
    ).launch()