Spaces:
Runtime error
Runtime error
File size: 12,652 Bytes
a8c39f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
import os
import numpy as np
import torch
import torch.utils.data
from mel_processing import spectrogram_torch
from utils import load_filepaths_and_text, load_wav_to_torch
class TextAudioLoaderMultiNSFsid(torch.utils.data.Dataset):
"""
Dataset that loads text and audio pairs.
Args:
hparams: Hyperparameters.
"""
def __init__(self, hparams):
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
self.max_wav_value = hparams.max_wav_value
self.sample_rate = hparams.sample_rate
self.filter_length = hparams.filter_length
self.hop_length = hparams.hop_length
self.win_length = hparams.win_length
self.sample_rate = hparams.sample_rate
self.min_text_len = getattr(hparams, "min_text_len", 1)
self.max_text_len = getattr(hparams, "max_text_len", 5000)
self._filter()
def _filter(self):
"""
Filters audio paths and text pairs based on text length.
"""
audiopaths_and_text_new = []
lengths = []
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
self.audiopaths_and_text = audiopaths_and_text_new
self.lengths = lengths
def get_sid(self, sid):
"""
Converts speaker ID to a LongTensor.
Args:
sid (str): Speaker ID.
"""
try:
sid = torch.LongTensor([int(sid)])
except ValueError as error:
print(f"Error converting speaker ID '{sid}' to integer. Exception: {error}")
sid = torch.LongTensor([0])
return sid
def get_audio_text_pair(self, audiopath_and_text):
"""
Loads and processes audio and text data for a single pair.
Args:
audiopath_and_text (list): List containing audio path, text, pitch, pitchf, and speaker ID.
"""
file = audiopath_and_text[0]
phone = audiopath_and_text[1]
pitch = audiopath_and_text[2]
pitchf = audiopath_and_text[3]
dv = audiopath_and_text[4]
phone, pitch, pitchf = self.get_labels(phone, pitch, pitchf)
spec, wav = self.get_audio(file)
dv = self.get_sid(dv)
len_phone = phone.size()[0]
len_spec = spec.size()[-1]
if len_phone != len_spec:
len_min = min(len_phone, len_spec)
len_wav = len_min * self.hop_length
spec = spec[:, :len_min]
wav = wav[:, :len_wav]
phone = phone[:len_min, :]
pitch = pitch[:len_min]
pitchf = pitchf[:len_min]
return (spec, wav, phone, pitch, pitchf, dv)
def get_labels(self, phone, pitch, pitchf):
"""
Loads and processes phoneme, pitch, and pitchf labels.
Args:
phone (str): Path to phoneme label file.
pitch (str): Path to pitch label file.
pitchf (str): Path to pitchf label file.
"""
phone = np.load(phone)
phone = np.repeat(phone, 2, axis=0)
pitch = np.load(pitch)
pitchf = np.load(pitchf)
n_num = min(phone.shape[0], 900)
phone = phone[:n_num, :]
pitch = pitch[:n_num]
pitchf = pitchf[:n_num]
phone = torch.FloatTensor(phone)
pitch = torch.LongTensor(pitch)
pitchf = torch.FloatTensor(pitchf)
return phone, pitch, pitchf
def get_audio(self, filename):
"""
Loads and processes audio data.
Args:
filename (str): Path to audio file.
"""
audio, sample_rate = load_wav_to_torch(filename)
if sample_rate != self.sample_rate:
raise ValueError(
f"{sample_rate} SR doesn't match target {self.sample_rate} SR"
)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec_filename = filename.replace(".wav", ".spec.pt")
if os.path.exists(spec_filename):
try:
spec = torch.load(spec_filename)
except Exception as error:
print(f"An error occurred getting spec from {spec_filename}: {error}")
spec = spectrogram_torch(
audio_norm,
self.filter_length,
self.hop_length,
self.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
else:
spec = spectrogram_torch(
audio_norm,
self.filter_length,
self.hop_length,
self.win_length,
center=False,
)
spec = torch.squeeze(spec, 0)
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
return spec, audio_norm
def __getitem__(self, index):
"""
Returns a single audio-text pair.
Args:
index (int): Index of the data sample.
"""
return self.get_audio_text_pair(self.audiopaths_and_text[index])
def __len__(self):
"""
Returns the length of the dataset.
"""
return len(self.audiopaths_and_text)
class TextAudioCollateMultiNSFsid:
"""
Collates text and audio data for training.
Args:
return_ids (bool, optional): Whether to return sample IDs. Defaults to False.
"""
def __init__(self, return_ids=False):
self.return_ids = return_ids
def __call__(self, batch):
"""
Collates a batch of data samples.
Args:
batch (list): List of data samples.
"""
_, ids_sorted_decreasing = torch.sort(
torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True
)
max_spec_len = max([x[0].size(1) for x in batch])
max_wave_len = max([x[1].size(1) for x in batch])
spec_lengths = torch.LongTensor(len(batch))
wave_lengths = torch.LongTensor(len(batch))
spec_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max_spec_len)
wave_padded = torch.FloatTensor(len(batch), 1, max_wave_len)
spec_padded.zero_()
wave_padded.zero_()
max_phone_len = max([x[2].size(0) for x in batch])
phone_lengths = torch.LongTensor(len(batch))
phone_padded = torch.FloatTensor(
len(batch), max_phone_len, batch[0][2].shape[1]
)
pitch_padded = torch.LongTensor(len(batch), max_phone_len)
pitchf_padded = torch.FloatTensor(len(batch), max_phone_len)
phone_padded.zero_()
pitch_padded.zero_()
pitchf_padded.zero_()
sid = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
spec = row[0]
spec_padded[i, :, : spec.size(1)] = spec
spec_lengths[i] = spec.size(1)
wave = row[1]
wave_padded[i, :, : wave.size(1)] = wave
wave_lengths[i] = wave.size(1)
phone = row[2]
phone_padded[i, : phone.size(0), :] = phone
phone_lengths[i] = phone.size(0)
pitch = row[3]
pitch_padded[i, : pitch.size(0)] = pitch
pitchf = row[4]
pitchf_padded[i, : pitchf.size(0)] = pitchf
sid[i] = row[5]
return (
phone_padded,
phone_lengths,
pitch_padded,
pitchf_padded,
spec_padded,
spec_lengths,
wave_padded,
wave_lengths,
sid,
)
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
"""
Distributed sampler that groups data into buckets based on length.
Args:
dataset (torch.utils.data.Dataset): Dataset to sample from.
batch_size (int): Batch size.
boundaries (list): List of length boundaries for buckets.
num_replicas (int, optional): Number of processes participating in distributed training. Defaults to None.
rank (int, optional): Rank of the current process. Defaults to None.
shuffle (bool, optional): Whether to shuffle the data. Defaults to True.
"""
def __init__(
self,
dataset,
batch_size,
boundaries,
num_replicas=None,
rank=None,
shuffle=True,
):
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
self.lengths = dataset.lengths
self.batch_size = batch_size
self.boundaries = boundaries
self.buckets, self.num_samples_per_bucket = self._create_buckets()
self.total_size = sum(self.num_samples_per_bucket)
self.num_samples = self.total_size // self.num_replicas
def _create_buckets(self):
"""
Creates buckets of data samples based on length.
"""
buckets = [[] for _ in range(len(self.boundaries) - 1)]
for i in range(len(self.lengths)):
length = self.lengths[i]
idx_bucket = self._bisect(length)
if idx_bucket != -1:
buckets[idx_bucket].append(i)
for i in range(len(buckets) - 1, -1, -1): #
if len(buckets[i]) == 0:
buckets.pop(i)
self.boundaries.pop(i + 1)
num_samples_per_bucket = []
for i in range(len(buckets)):
len_bucket = len(buckets[i])
total_batch_size = self.num_replicas * self.batch_size
rem = (
total_batch_size - (len_bucket % total_batch_size)
) % total_batch_size
num_samples_per_bucket.append(len_bucket + rem)
return buckets, num_samples_per_bucket
def __iter__(self):
"""
Iterates over batches of data samples.
"""
g = torch.Generator()
g.manual_seed(self.epoch)
indices = []
if self.shuffle:
for bucket in self.buckets:
indices.append(torch.randperm(len(bucket), generator=g).tolist())
else:
for bucket in self.buckets:
indices.append(list(range(len(bucket))))
batches = []
for i in range(len(self.buckets)):
bucket = self.buckets[i]
len_bucket = len(bucket)
ids_bucket = indices[i]
num_samples_bucket = self.num_samples_per_bucket[i]
rem = num_samples_bucket - len_bucket
ids_bucket = (
ids_bucket
+ ids_bucket * (rem // len_bucket)
+ ids_bucket[: (rem % len_bucket)]
)
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
# batching
for j in range(len(ids_bucket) // self.batch_size):
batch = [
bucket[idx]
for idx in ids_bucket[
j * self.batch_size : (j + 1) * self.batch_size
]
]
batches.append(batch)
if self.shuffle:
batch_ids = torch.randperm(len(batches), generator=g).tolist()
batches = [batches[i] for i in batch_ids]
self.batches = batches
assert len(self.batches) * self.batch_size == self.num_samples
return iter(self.batches)
def _bisect(self, x, lo=0, hi=None):
"""
Performs binary search to find the bucket index for a given length.
Args:
x (int): Length to find the bucket for.
lo (int, optional): Lower bound of the search range. Defaults to 0.
hi (int, optional): Upper bound of the search range. Defaults to None.
"""
if hi is None:
hi = len(self.boundaries) - 1
if hi > lo:
mid = (hi + lo) // 2
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
return mid
elif x <= self.boundaries[mid]:
return self._bisect(x, lo, mid)
else:
return self._bisect(x, mid + 1, hi)
else:
return -1
def __len__(self):
"""
Returns the length of the sampler.
"""
return self.num_samples // self.batch_size
|