Spaces:
Runtime error
Runtime error
File size: 13,483 Bytes
9ff1108 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
# !/usr/bin/env python3
"""
codes for oilpainting style transfer.
"""
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import numpy as np
from PIL import Image
import math
import cv2
import render_utils
import time
def get_single_layer_lists(param, decision, ori_img, render_size_x, render_size_y, h, w, meta_brushes, dilation, erosion, stroke_num):
"""
get_single_layer_lists
"""
valid_foregrounds = render_utils.param2stroke(param[:, :], render_size_y, render_size_x, meta_brushes)
valid_alphas = (valid_foregrounds > 0).astype('float32')
valid_foregrounds = valid_foregrounds.reshape([-1, stroke_num, 1, render_size_y, render_size_x])
valid_alphas = valid_alphas.reshape([-1, stroke_num, 1, render_size_y, render_size_x])
temp = [dilation(valid_foregrounds[:, i, :, :, :]) for i in range(stroke_num)]
valid_foregrounds = paddle.stack(temp, axis=1)
valid_foregrounds = valid_foregrounds.reshape([-1, 1, render_size_y, render_size_x])
temp = [erosion(valid_alphas[:, i, :, :, :]) for i in range(stroke_num)]
valid_alphas = paddle.stack(temp, axis=1)
valid_alphas = valid_alphas.reshape([-1, 1, render_size_y, render_size_x])
patch_y = 4 * render_size_y // 5
patch_x = 4 * render_size_x // 5
img_patch = ori_img.reshape([1, 3, h, ori_img.shape[2]//h, w, ori_img.shape[3]//w])
img_patch = img_patch.transpose([0, 2, 4, 1, 3, 5])[0]
xid_list = []
yid_list = []
error_list = []
for flag_idx, flag in enumerate(decision.cpu().numpy()):
if flag:
flag_idx = flag_idx // stroke_num
x_id = flag_idx % w
flag_idx = flag_idx // w
y_id = flag_idx % h
xid_list.append(x_id)
yid_list.append(y_id)
inner_fores = valid_foregrounds[:, :, render_size_y // 10:9 * render_size_y // 10,
render_size_x // 10:9 * render_size_x // 10]
inner_alpha = valid_alphas[:, :, render_size_y // 10:9 * render_size_y // 10,
render_size_x // 10:9 * render_size_x // 10]
inner_fores = inner_fores.reshape([h * w, stroke_num, 1, patch_y, patch_x])
inner_alpha = inner_alpha.reshape([h * w, stroke_num, 1, patch_y, patch_x])
inner_real = img_patch.reshape([h * w, 3, patch_y, patch_x]).unsqueeze(1)
R = param[:, 5]
G = param[:, 6]
B = param[:, 7]#, G, B = param[5:]
R = R.reshape([-1, stroke_num]).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
G = G.reshape([-1, stroke_num]).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
B = B.reshape([-1, stroke_num]).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
error_R = R * inner_fores - inner_real[:, :, 0:1, :, :]
error_G = G * inner_fores - inner_real[:, :, 1:2, :, :]
error_B = B * inner_fores - inner_real[:, :, 2:3, :, :]
error = paddle.abs(error_R) + paddle.abs(error_G)+ paddle.abs(error_B)
error = error * inner_alpha
error = paddle.sum(error, axis=(2, 3, 4)) / paddle.sum(inner_alpha, axis=(2, 3, 4))
error_list = error.reshape([-1]).numpy()[decision.numpy()]
error_list = list(error_list)
valid_foregrounds = paddle.to_tensor(valid_foregrounds.numpy()[decision.numpy()])
valid_alphas = paddle.to_tensor(valid_alphas.numpy()[decision.numpy()])
selected_param = paddle.to_tensor(param.numpy()[decision.numpy()])
return xid_list, yid_list, valid_foregrounds, valid_alphas, error_list, selected_param
def get_single_stroke_on_full_image_A(x_id, y_id, valid_foregrounds, valid_alphas, param, original_img,
render_size_x, render_size_y, patch_x, patch_y):
"""
get_single_stroke_on_full_image_A
"""
tmp_foreground = paddle.zeros_like(original_img)
patch_y_num = original_img.shape[2] // patch_y
patch_x_num = original_img.shape[3] // patch_x
brush = valid_foregrounds.unsqueeze(0)
color_map = param[5:]
brush = brush.tile([1, 3, 1, 1])
color_map = color_map.unsqueeze(-1).unsqueeze(-1).unsqueeze(0)#.repeat(1, 1, H, W)
brush = brush * color_map
pad_l = x_id * patch_x
pad_r = (patch_x_num - x_id - 1) * patch_x
pad_t = y_id * patch_y
pad_b = (patch_y_num - y_id - 1) * patch_y
tmp_foreground = nn.functional.pad(brush, [pad_l, pad_r, pad_t, pad_b])
tmp_foreground = tmp_foreground[:, :, render_size_y // 10:-render_size_y // 10,
render_size_x // 10:-render_size_x // 10]
tmp_alpha = nn.functional.pad(valid_alphas.unsqueeze(0), [pad_l, pad_r, pad_t, pad_b])
tmp_alpha = tmp_alpha[:, :, render_size_y // 10:-render_size_y // 10, render_size_x // 10:-render_size_x // 10]
return tmp_foreground, tmp_alpha
def get_single_stroke_on_full_image_B(x_id, y_id, valid_foregrounds, valid_alphas, param,
original_img, render_size_x, render_size_y, patch_x, patch_y):
"""
get_single_stroke_on_full_image_B
"""
x_expand = patch_x // 2 + render_size_x // 10
y_expand = patch_y // 2 + render_size_y // 10
pad_l = x_id * patch_x
pad_r = original_img.shape[3] + 2 * x_expand - (x_id * patch_x + render_size_x)
pad_t = y_id * patch_y
pad_b = original_img.shape[2] + 2 * y_expand - (y_id * patch_y + render_size_y)
brush = valid_foregrounds.unsqueeze(0)
color_map = param[5:]
brush = brush.tile([1, 3, 1, 1])
color_map = color_map.unsqueeze(-1).unsqueeze(-1).unsqueeze(0)#.repeat(1, 1, H, W)
brush = brush * color_map
tmp_foreground = nn.functional.pad(brush, [pad_l, pad_r, pad_t, pad_b])
tmp_foreground = tmp_foreground[:, :, y_expand:- y_expand, x_expand:-x_expand]
tmp_alpha = nn.functional.pad(valid_alphas.unsqueeze(0), [pad_l, pad_r, pad_t, pad_b])
tmp_alpha = tmp_alpha[:, :, y_expand:- y_expand, x_expand:-x_expand]
return tmp_foreground, tmp_alpha
def stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num):
"""
stroke_net_predict
"""
img_patch = img_patch.transpose([0, 2, 1]).reshape([-1, 3, patch_size, patch_size])
result_patch = result_patch.transpose([0, 2, 1]).reshape([-1, 3, patch_size, patch_size])
#*----- Stroke Predictor -----*#
shape_param, stroke_decision = net_g(img_patch, result_patch)
stroke_decision = (stroke_decision > 0).astype('float32')
#*----- sampling color -----*#
grid = shape_param[:, :, :2].reshape([img_patch.shape[0] * stroke_num, 1, 1, 2])
img_temp = img_patch.unsqueeze(1).tile([1, stroke_num, 1, 1, 1]).reshape([
img_patch.shape[0] * stroke_num, 3, patch_size, patch_size])
color = nn.functional.grid_sample(img_temp, 2 * grid - 1, align_corners=False).reshape([
img_patch.shape[0], stroke_num, 3])
stroke_param = paddle.concat([shape_param, color], axis=-1)
param = stroke_param.reshape([-1, 8])
decision = stroke_decision.reshape([-1]).astype('bool')
param[:, :2] = param[:, :2] / 1.25 + 0.1
param[:, 2:4] = param[:, 2:4] / 1.25
return param, decision
def sort_strokes(params, decision, scores):
"""
sort_strokes
"""
sorted_scores, sorted_index = paddle.sort(scores, axis=1, descending=False)
sorted_params = []
for idx in range(8):
tmp_pick_params = paddle.gather(params[:, :, idx], axis=1, index=sorted_index)
sorted_params.append(tmp_pick_params)
sorted_params = paddle.stack(sorted_params, axis=2)
sorted_decison = paddle.gather(decision.squeeze(2), axis=1, index=sorted_index)
return sorted_params, sorted_decison
def render_serial(original_img, net_g, meta_brushes):
patch_size = 32
stroke_num = 8
H, W = original_img.shape[-2:]
K = max(math.ceil(math.log2(max(H, W) / patch_size)), 0)
dilation = render_utils.Dilation2d(m=1)
erosion = render_utils.Erosion2d(m=1)
frames_per_layer = [20, 20, 30, 40, 60]
final_frame_list = []
with paddle.no_grad():
#* ----- read in image and init canvas ----- *#
final_result = paddle.zeros_like(original_img)
for layer in range(0, K + 1):
t0 = time.time()
layer_size = patch_size * (2 ** layer)
img = nn.functional.interpolate(original_img, (layer_size, layer_size))
result = nn.functional.interpolate(final_result, (layer_size, layer_size))
img_patch = nn.functional.unfold(img, [patch_size, patch_size],
strides=[patch_size, patch_size])
result_patch = nn.functional.unfold(result, [patch_size, patch_size],
strides=[patch_size, patch_size])
h = (img.shape[2] - patch_size) // patch_size + 1
w = (img.shape[3] - patch_size) // patch_size + 1
render_size_y = int(1.25 * H // h)
render_size_x = int(1.25 * W // w)
#* -------------------------------------------------------------*#
#* -------------generate strokes on window type A---------------*#
#* -------------------------------------------------------------*#
param, decision = stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num)
expand_img = original_img
wA_xid_list, wA_yid_list, wA_fore_list, wA_alpha_list, wA_error_list, wA_params = \
get_single_layer_lists(param, decision, original_img, render_size_x, render_size_y, h, w,
meta_brushes, dilation, erosion, stroke_num)
#* -------------------------------------------------------------*#
#* -------------generate strokes on window type B---------------*#
#* -------------------------------------------------------------*#
#*----- generate input canvas and target patches -----*#
wB_error_list = []
img = nn.functional.pad(img, [patch_size // 2, patch_size // 2,
patch_size // 2, patch_size // 2])
result = nn.functional.pad(result, [patch_size // 2, patch_size // 2,
patch_size // 2, patch_size // 2])
img_patch = nn.functional.unfold(img, [patch_size, patch_size],
strides=[patch_size, patch_size])
result_patch = nn.functional.unfold(result, [patch_size, patch_size],
strides=[patch_size, patch_size])
h += 1
w += 1
param, decision = stroke_net_predict(img_patch, result_patch, patch_size, net_g, stroke_num)
patch_y = 4 * render_size_y // 5
patch_x = 4 * render_size_x // 5
expand_img = nn.functional.pad(original_img, [patch_x // 2, patch_x // 2,
patch_y // 2, patch_y // 2])
wB_xid_list, wB_yid_list, wB_fore_list, wB_alpha_list, wB_error_list, wB_params = \
get_single_layer_lists(param, decision, expand_img, render_size_x, render_size_y, h, w,
meta_brushes, dilation, erosion, stroke_num)
#* -------------------------------------------------------------*#
#* -------------rank strokes and plot stroke one by one---------*#
#* -------------------------------------------------------------*#
numA = len(wA_error_list)
numB = len(wB_error_list)
total_error_list = wA_error_list + wB_error_list
sort_list = list(np.argsort(total_error_list))
sample = 0
samples = np.linspace(0, len(sort_list) - 2, frames_per_layer[layer]).astype(int)
for ii in sort_list:
ii = int(ii)
if ii < numA:
x_id = wA_xid_list[ii]
y_id = wA_yid_list[ii]
valid_foregrounds = wA_fore_list[ii]
valid_alphas = wA_alpha_list[ii]
sparam = wA_params[ii]
tmp_foreground, tmp_alpha = get_single_stroke_on_full_image_A(x_id, y_id,
valid_foregrounds, valid_alphas, sparam, original_img, render_size_x, render_size_y, patch_x, patch_y)
else:
x_id = wB_xid_list[ii - numA]
y_id = wB_yid_list[ii - numA]
valid_foregrounds = wB_fore_list[ii - numA]
valid_alphas = wB_alpha_list[ii - numA]
sparam = wB_params[ii - numA]
tmp_foreground, tmp_alpha = get_single_stroke_on_full_image_B(x_id, y_id,
valid_foregrounds, valid_alphas, sparam, original_img, render_size_x, render_size_y, patch_x, patch_y)
final_result = tmp_foreground * tmp_alpha + (1 - tmp_alpha) * final_result
if sample in samples:
saveframe = (final_result.numpy().squeeze().transpose([1,2,0])[:,:,::-1] * 255).astype(np.uint8)
final_frame_list.append(saveframe)
#saveframe = cv2.resize(saveframe, (ow, oh))
sample += 1
print("layer %d cost: %.02f" %(layer, time.time() - t0))
saveframe = (final_result.numpy().squeeze().transpose([1,2,0])[:,:,::-1] * 255).astype(np.uint8)
final_frame_list.append(saveframe)
return final_frame_list |