File size: 11,461 Bytes
9105776
5f364b5
801e5e9
c103ac7
f4cf641
5f364b5
 
 
f4cf641
12d6cf5
8268b44
0308441
 
 
 
 
 
 
 
 
107f628
0308441
 
801e5e9
 
 
 
 
 
 
 
 
 
 
107f628
801e5e9
 
 
 
107f628
 
 
 
 
 
 
 
 
 
 
 
 
 
8116465
 
 
 
0308441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8116465
 
 
 
f4cf641
8268b44
f4cf641
 
 
8575388
8268b44
 
f4cf641
8268b44
 
 
 
 
8575388
f4cf641
 
0308441
985fbf6
0308441
 
 
 
 
 
 
 
 
 
c5d7876
0a77976
8bbd43c
0308441
 
 
 
801e5e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
985fbf6
78591ba
0308441
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e531a7
d8ad2ca
0308441
f4cf641
0308441
 
8268b44
 
1e531a7
8268b44
 
 
12d6cf5
8268b44
f4cf641
afdfe21
5f364b5
801e5e9
 
 
8268b44
1d3a31b
5f364b5
 
 
1e531a7
0308441
 
 
 
 
 
 
5f364b5
 
801e5e9
 
5f364b5
c103ac7
0308441
 
 
 
 
 
 
8268b44
 
8575388
f4cf641
8268b44
 
 
f4cf641
 
 
8575388
985fbf6
0308441
 
 
 
 
 
 
 
 
 
 
5f364b5
c103ac7
0308441
f4cf641
8268b44
 
 
0308441
8116465
0308441
 
f4cf641
0308441
 
 
 
 
5f364b5
 
 
0308441
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import spaces
import torch
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline, UniPCMultistepScheduler
from diffusers.utils import export_to_video
from transformers import CLIPVisionModel
import gradio as gr
import tempfile
from huggingface_hub import hf_hub_download
import numpy as np
from PIL import Image
import random
from datetime import datetime
from huggingface_hub import login
import os
import time
from PIL import Image
import json
import boto3
from io import BytesIO
from diffusers.utils import load_image



MODEL_ID = "Wan-AI/Wan2.1-I2V-14B-480P-Diffusers"
LORA_REPO_ID = "Kijai/WanVideo_comfy"
LORA_FILENAME = "Wan21_CausVid_14B_T2V_lora_rank32.safetensors"

image_encoder = CLIPVisionModel.from_pretrained(MODEL_ID, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(MODEL_ID, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
    MODEL_ID, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=8.0)
pipe.to("cuda")

causvid_path = hf_hub_download(repo_id=LORA_REPO_ID, filename=LORA_FILENAME)
pipe.load_lora_weights(causvid_path, adapter_name="causvid_lora")
pipe.set_adapters(["causvid_lora"], adapter_weights=[0.95])
pipe.fuse_lora()

MOD_VALUE = 32
DEFAULT_H_SLIDER_VALUE = 512
DEFAULT_W_SLIDER_VALUE = 896
NEW_FORMULA_MAX_AREA = 480.0 * 832.0 

SLIDER_MIN_H, SLIDER_MAX_H = 128, 896
SLIDER_MIN_W, SLIDER_MAX_W = 128, 896
MAX_SEED = np.iinfo(np.int32).max

FIXED_FPS = 24
MIN_FRAMES_MODEL = 8
MAX_FRAMES_MODEL = 81 

default_prompt_i2v = "make this image come alive, cinematic motion, smooth animation"
default_negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards, watermark, text, signature"


class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        self.start_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time))
        print(f"Activity: {self.activity_name}, Start time: {self.start_time_formatted}")
        return self
    
    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        self.end_time_formatted = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time))
        
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")



def _calculate_new_dimensions_wan(pil_image, mod_val, calculation_max_area,
                                 min_slider_h, max_slider_h,
                                 min_slider_w, max_slider_w,
                                 default_h, default_w):
    orig_w, orig_h = pil_image.size
    if orig_w <= 0 or orig_h <= 0:
        return default_h, default_w

    aspect_ratio = orig_h / orig_w
    
    calc_h = round(np.sqrt(calculation_max_area * aspect_ratio))
    calc_w = round(np.sqrt(calculation_max_area / aspect_ratio))

    calc_h = max(mod_val, (calc_h // mod_val) * mod_val)
    calc_w = max(mod_val, (calc_w // mod_val) * mod_val)
    
    new_h = int(np.clip(calc_h, min_slider_h, (max_slider_h // mod_val) * mod_val))
    new_w = int(np.clip(calc_w, min_slider_w, (max_slider_w // mod_val) * mod_val))
    
    return new_h, new_w


def upload_video_to_r2(video_file, account_id, access_key, secret_key, bucket_name):
    with calculateDuration("Upload video"):
        connectionUrl = f"https://{account_id}.r2.cloudflarestorage.com"
        s3 = boto3.client(
            's3',
            endpoint_url=connectionUrl,
            region_name='auto',
            aws_access_key_id=access_key,
            aws_secret_access_key=secret_key
        )
        current_time = datetime.now().strftime("%Y/%m/%d/%H%M%S")
        video_remote_path = f"generated_videos/{current_time}_{random.randint(0, MAX_SEED)}.mp4"
        with open(video_file, "rb") as f:     # 修正关键点
            s3.upload_fileobj(f, bucket_name, video_remote_path)
        print("upload finish", video_remote_path)

    return video_remote_path

def handle_image_upload_for_dims_wan(uploaded_pil_image, current_h_val, current_w_val):
    if uploaded_pil_image is None:
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)
    try:
        new_h, new_w = _calculate_new_dimensions_wan(
            uploaded_pil_image, MOD_VALUE, NEW_FORMULA_MAX_AREA,
            SLIDER_MIN_H, SLIDER_MAX_H, SLIDER_MIN_W, SLIDER_MAX_W,
            DEFAULT_H_SLIDER_VALUE, DEFAULT_W_SLIDER_VALUE
        )
        return gr.update(value=new_h), gr.update(value=new_w)
    except Exception as e:
        gr.Warning("Error attempting to calculate new dimensions")
        return gr.update(value=DEFAULT_H_SLIDER_VALUE), gr.update(value=DEFAULT_W_SLIDER_VALUE)

def get_duration(
    image_url, 
    prompt, 
    height, 
    width, 
    negative_prompt,
    duration_seconds,
    guidance_scale, 
    steps,
    seed, 
    randomize_seed, 
    upload_to_r2, 
    account_id, 
    access_key, 
    secret_key, 
    bucket,
    progress=gr.Progress(track_tqdm=True)
):
    # 保持逻辑不变
    if steps > 4 and duration_seconds > 2:
        return 90
    elif steps > 4 or duration_seconds > 2:
        return 75
    else:
        return 60


@spaces.GPU(duration=120)
def generate_video(image_url, 
                   prompt, 
                   height, 
                   width, 
                   negative_prompt,
                   duration_seconds,
                   guidance_scale, 
                   steps,
                   seed, 
                   randomize_seed, 
                   upload_to_r2, 
                   account_id, 
                   access_key, 
                   secret_key, 
                   bucket,
                   progress=gr.Progress(track_tqdm=True)):
    
    if image_url is None:
        raise gr.Error("Please upload an input image.")
    
    input_image = load_image(image_url)
    target_h = max(MOD_VALUE, (int(height) // MOD_VALUE) * MOD_VALUE)
    target_w = max(MOD_VALUE, (int(width) // MOD_VALUE) * MOD_VALUE)
    
    num_frames = np.clip(int(round(duration_seconds * FIXED_FPS)), MIN_FRAMES_MODEL, MAX_FRAMES_MODEL)
    
    current_seed = random.randint(0, MAX_SEED) if randomize_seed else int(seed)

    resized_image = input_image.resize((target_w, target_h))

    with torch.inference_mode():
        output_frames_list = pipe(
            image=resized_image, prompt=prompt, negative_prompt=negative_prompt,
            height=target_h, width=target_w, num_frames=num_frames,
            guidance_scale=float(guidance_scale), num_inference_steps=int(steps),
            generator=torch.Generator(device="cuda").manual_seed(current_seed)
        ).frames[0]

    with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmpfile:
        video_path = tmpfile.name
    export_to_video(output_frames_list, video_path, fps=FIXED_FPS)
    if upload_to_r2:
        video_url = upload_video_to_r2(video_path, account_id, access_key, secret_key, bucket)
        result = {"status": "success", "message": "upload video success", "url": video_url}    
    else:
        result = {"status": "success", "message": "Image generated but not uploaded", "url": video_path}
    return json.dumps(result)


with gr.Blocks() as demo:
    gr.Markdown("# Fast 4 steps Wan 2.1 I2V (14B) with CausVid LoRA")
    gr.Markdown("[CausVid](https://github.com/tianweiy/CausVid) is a distilled version of Wan 2.1 to run faster in just 4-8 steps, [extracted as LoRA by Kijai](https://huggingface.co/Kijai/WanVideo_comfy/blob/main/Wan21_CausVid_14B_T2V_lora_rank32.safetensors) and is compatible with 🧨 diffusers")
    with gr.Row():
        with gr.Column():
            image_url_input =  gr.Textbox(
                label="Orginal image url",
                show_label=True,
                max_lines=1,
                placeholder="Enter image url for inpainting",
                container=False
            )            
            prompt_input = gr.Textbox(label="Prompt", value=default_prompt_i2v)
            duration_seconds_input = gr.Slider(minimum=round(MIN_FRAMES_MODEL/FIXED_FPS,1), maximum=round(MAX_FRAMES_MODEL/FIXED_FPS,1), step=0.1, value=2, label="Duration (seconds)", info=f"Clamped to model's {MIN_FRAMES_MODEL}-{MAX_FRAMES_MODEL} frames at {FIXED_FPS}fps.")
            
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
                seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
                randomize_seed_checkbox = gr.Checkbox(label="Randomize seed", value=True, interactive=True)
                with gr.Row():
                    height_input = gr.Slider(minimum=SLIDER_MIN_H, maximum=SLIDER_MAX_H, step=MOD_VALUE, value=DEFAULT_H_SLIDER_VALUE, label=f"Output Height (multiple of {MOD_VALUE})")
                    width_input = gr.Slider(minimum=SLIDER_MIN_W, maximum=SLIDER_MAX_W, step=MOD_VALUE, value=DEFAULT_W_SLIDER_VALUE, label=f"Output Width (multiple of {MOD_VALUE})")
                steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=4, label="Inference Steps") 
                guidance_scale_input = gr.Slider(minimum=0.0, maximum=20.0, step=0.5, value=1.0, label="Guidance Scale", visible=True)
            
            with gr.Accordion("R2 Settings", open=False):
                upload_to_r2 = gr.Checkbox(label="Upload to R2", value=False)
                with gr.Row():
                    account_id = gr.Textbox(label="Account Id", placeholder="Enter R2 account id", value="")
                    bucket = gr.Textbox(label="Bucket Name", placeholder="Enter R2 bucket name here",  value="")
    
                with gr.Row():
                    access_key = gr.Textbox(label="Access Key", placeholder="Enter R2 access key here", value="")
                    secret_key = gr.Textbox(label="Secret Key", placeholder="Enter R2 secret key here", value="")
                
            generate_button = gr.Button("Generate Video", variant="primary")
        with gr.Column():
            output_json_component = gr.Code(label="JSON Result", language="json", value="{}")

    
    
    ui_inputs = [
        image_url_input, prompt_input, height_input, width_input,
        negative_prompt_input, duration_seconds_input,
        guidance_scale_input, steps_slider, seed_input, randomize_seed_checkbox,
        upload_to_r2, account_id,  access_key, secret_key, bucket
    ]
    generate_button.click(
        fn=generate_video, 
        inputs=ui_inputs, 
        outputs=output_json_component, 
        api_name="predict"
    )

if __name__ == "__main__":
    demo.queue(api_open=True)
    demo.launch(share=True)