Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,643 Bytes
d0852ef 1486d19 d731134 1486d19 d0852ef d74c6d6 91d2029 d74c6d6 d0852ef 1486d19 d74c6d6 ea8efbb d74c6d6 ea8efbb d74c6d6 ea8efbb d74c6d6 d0852ef 1486d19 d0852ef 1486d19 d0852ef 1486d19 d0852ef d731134 d0852ef d731134 d0852ef 1486d19 d0852ef 91d2029 d0852ef 91d2029 d0852ef fc2d50f d731134 fc2d50f d731134 fc2d50f d0852ef fc2d50f d0852ef fc2d50f d0852ef ea8efbb d0852ef 91d2029 1486d19 d0852ef 1486d19 d0852ef 1486d19 d0852ef 1486d19 91d2029 d0852ef 1486d19 d0852ef 91d2029 d0852ef 1486d19 d0852ef 1486d19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import spaces
import gradio as gr
import numpy as np
import random
from PIL import Image
import torch
from diffusers import (
ControlNetModel,
DiffusionPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionXLControlNetPipeline,
UniPCMultistepScheduler,
EulerDiscreteScheduler,
AutoencoderKL
)
from transformers import DPTFeatureExtractor, DPTForDepthEstimation, DPTImageProcessor
from transformers import CLIPImageProcessor
from diffusers.utils import load_image
from gradio_imageslider import ImageSlider
import boto3
from io import BytesIO
device = "cuda"
base_model_id = "SG161222/RealVisXL_V4.0"
controlnet_model_id = "diffusers/controlnet-depth-sdxl-1.0"
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
if torch.cuda.is_available():
# load pipe
controlnet = ControlNetModel.from_pretrained(
controlnet_model_id,
# variant="fp16",
use_safetensors=True,
torch_dtype=torch.float32
)
# vae = AutoencoderKL.from_pretrained(vae_model_id, torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_id,
controlnet=controlnet,
# vae=vae,
# variant="fp16",
use_safetensors=True,
torch_dtype=torch.float32,
)
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas")
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
USE_TORCH_COMPILE = 0
ENABLE_CPU_OFFLOAD = 0
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_depth_map(image):
original_size = (image.size[1], image.size[0])
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
with torch.no_grad(), torch.autocast("cuda"):
depth_map = depth_estimator(image).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1),
size=original_size,
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def upload_to_s3(image, region, access_key, secret_key, bucket_name):
s3 = boto3.client(
's3',
region_name=region,
aws_access_key_id=access_key,
aws_secret_access_key=secret_key
)
image_key = f"generated_images/{random.randint(0, MAX_SEED)}.png"
buffer = BytesIO()
image.save(buffer, "PNG")
buffer.seek(0)
s3.upload_fileobj(buffer, bucket_name, image_key)
return image_key
@spaces.GPU(enable_queue=True)
def process(image, image_url, prompt, n_prompt, num_steps, guidance_scale, control_strength, seed, upload_to_s3, region, access_key, secret_key, progress=gr.Progress()):
if image_url:
orginal_image = load_image(image_url)
else:
orginal_image = Image.fromarray(image)
size = (orginal_image.size[0], orginal_image.size[1])
print(size)
depth_image = get_depth_map(orginal_image)
generator = torch.Generator().manual_seed(seed)
generated_image = pipe(
prompt=prompt,
negative_prompt=n_prompt,
width=size[0],
height=size[1],
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
strength=control_strength,
generator=generator,
image=depth_image
).images[0]
if upload_to_s3:
url = upload_to_s3(generated_image, region, access_key, secret_key, bucket)
result = {"status": "success", "url": url}
else:
result = {"status": "success", "message": "Image generated but not uploaded"}
return [[depth_image, generated_image], json.dumps(result)]
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image = gr.Image()
image_url = gr.Textbox(label="Image Url", placeholder="Enter image URL here (optional)")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button("Run")
with gr.Accordion("Advanced options", open=True):
num_steps = gr.Slider(label="Number of steps", minimum=1, maximum=100, value=30, step=1)
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.1, maximum=30.0, value=7.5, step=0.1)
control_strength = gr.Slider(label="Control Strength", minimum=0.1, maximum=4.0, value=0.8, step=0.1)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
n_prompt = gr.Textbox(
label="Negative prompt",
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
)
upload_to_s3 = gr.Checkbox(label="Upload to S3", value=False)
region = gr.Textbox(label="S3 Region", placeholder="Enter S3 region here")
access_key = gr.Textbox(label="Access Key", placeholder="Enter S3 access key here")
secret_key = gr.Textbox(label="Secret Key", placeholder="Enter S3 secret key here")
bucket = gr.Textbox(label="Bucket Name", placeholder="Enter S3 bucket name here")
with gr.Column():
result = ImageSlider(label="Generate image", type="pil", slider_color="pink")
logs = gr.Textbox(label="logs")
inputs = [
image,
image_url,
prompt,
n_prompt,
num_steps,
guidance_scale,
control_strength,
seed,
upload_to_s3,
region,
access_key,
secret_key,
bucket
]
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=process,
inputs=inputs,
outputs=[result, logs],
api_name=False
)
demo.queue().launch() |