Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,241 Bytes
efc40ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
import os
from typing import Union, Any, Tuple, Dict
from unittest.mock import patch
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor
from transformers.dynamic_module_utils import get_imports
# FLORENCE_CHECKPOINT = "microsoft/Florence-2-base"
FLORENCE_CHECKPOINT = "microsoft/Florence-2-large-ft"
FLORENCE_OBJECT_DETECTION_TASK = '<OD>'
FLORENCE_DETAILED_CAPTION_TASK = '<MORE_DETAILED_CAPTION>'
FLORENCE_CAPTION_TO_PHRASE_GROUNDING_TASK = '<CAPTION_TO_PHRASE_GROUNDING>'
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK = '<OPEN_VOCABULARY_DETECTION>'
FLORENCE_DENSE_REGION_CAPTION_TASK = '<DENSE_REGION_CAPTION>'
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
"""Work around for https://huggingface.co/microsoft/phi-1_5/discussions/72."""
if not str(filename).endswith("/modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
imports.remove("flash_attn")
return imports
def load_florence_model(
device: torch.device, checkpoint: str = FLORENCE_CHECKPOINT
) -> Tuple[Any, Any]:
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
model = AutoModelForCausalLM.from_pretrained(
checkpoint, trust_remote_code=True).to(device).eval()
processor = AutoProcessor.from_pretrained(
checkpoint, trust_remote_code=True)
return model, processor
def run_florence_inference(
model: Any,
processor: Any,
device: torch.device,
image: Image,
task: str,
text: str = None
) -> Tuple[str, Dict]:
if text:
prompt = task + text
else:
prompt = task
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
print(inputs)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3
)
generated_text = processor.batch_decode(
generated_ids, skip_special_tokens=False)[0]
response = processor.post_process_generation(
generated_text, task=task, image_size=image.size)
print(generated_text, response)
return generated_text, response |