Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,220 Bytes
59ee13b bf2495a 79c3085 bf2495a d75e8d7 bf2495a 79c3085 bf2495a 87b4a1a bf2495a 882873e bf2495a b47e7c8 bf2495a f493b13 bf2495a 79c3085 31f479a 79c3085 31f479a 79c3085 bf2495a c304f92 bf2495a c304f92 bf2495a 93b410f bf2495a cf35ebe bf2495a ee0bcfb f732e49 ee0bcfb 93b410f bf2495a 93b410f bf2495a 02742e5 bf2495a 882873e bf2495a 8df3de7 bf2495a f493b13 bf2495a 60efe0d 882873e bf2495a 882873e bf2495a 882873e bf2495a cf35ebe bf2495a f493b13 bf2495a 882873e bf2495a f493b13 bf2495a 882873e f493b13 bf2495a 882873e bf2495a 882873e bf2495a 882873e bf2495a 882873e bf2495a 41a92c7 bf2495a 3b49dff 79c3085 3b49dff 224343f 3b49dff 31f479a 3b49dff 79c3085 bf2495a 79c3085 bf2495a 79c3085 bf2495a b46a036 bf2495a f17a90e bf2495a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 |
import spaces
from typing import Tuple, Union, List
import os
import time
import numpy as np
from PIL import Image
import requests
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.pipelines.controlnet import StableDiffusionControlNetInpaintPipeline
from diffusers import ControlNetModel, UniPCMultistepScheduler, AutoPipelineForText2Image
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation, AutoModelForDepthEstimation
from colors import ade_palette
from utils import map_colors_rgb
from diffusers import StableDiffusionXLPipeline
import gradio as gr
import gc
device = "cuda"
dtype = torch.float16
css = """
#img-display-container {
max-height: 50vh;
}
#img-display-input {
max-height: 40vh;
}
#img-display-output {
max-height: 40vh;
}
"""
def download_file(url, folder_path, filename):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
print(f"File already exists: {file_path}")
else:
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print(f"File successfully downloaded and saved: {file_path}")
else:
print(f"Error downloading the file. Status code: {response.status_code}")
def download_models():
models = {
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
"UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
"UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
"NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
"NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
"LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
"LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
"CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
"VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
}
for model, (url, folder, filename) in models.items():
download_file(url, folder, filename)
def timer_func(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
return result
return wrapper
class LazyLoadPipeline:
def __init__(self):
self.pipe = None
@timer_func
def load(self):
if self.pipe is None:
print("Starting to load the pipeline...")
self.pipe = self.setup_pipeline()
print(f"Moving pipeline to device: {device}")
self.pipe.to(device)
if USE_TORCH_COMPILE:
print("Compiling the model...")
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
@timer_func
def setup_pipeline(self):
print("Setting up the pipeline...")
controlnet = ControlNetModel.from_single_file(
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
use_safetensors=True,
safety_checker=safety_checker
)
vae = AutoencoderKL.from_single_file(
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
torch_dtype=torch.float16
)
pipe.vae = vae
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
pipe.fuse_lora(lora_scale=0.5)
pipe.load_lora_weights("models/Lora/more_details.safetensors")
pipe.fuse_lora(lora_scale=1.)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
return pipe
def __call__(self, *args, **kwargs):
return self.pipe(*args, **kwargs)
class LazyRealESRGAN:
def __init__(self, device, scale):
self.device = device
self.scale = scale
self.model = None
def load_model(self):
if self.model is None:
self.model = RealESRGAN(self.device, scale=self.scale)
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
def predict(self, img):
self.load_model()
return self.model.predict(img)
@timer_func
def resize_and_upscale(input_image, resolution):
scale = 2 if resolution <= 2048 else 4
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H = int(round(H * k / 64.0)) * 64
W = int(round(W * k / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
if scale == 2:
img = lazy_realesrgan_x2.predict(img)
else:
img = lazy_realesrgan_x4.predict(img)
return img
@timer_func
def create_hdr_effect(original_image, hdr):
if hdr == 0:
return original_image
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
merge_mertens = cv2.createMergeMertens()
hdr_image = merge_mertens.process(images)
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
def prepare_image(input_image, resolution, hdr):
condition_image = resize_and_upscale(input_image, resolution)
condition_image = create_hdr_effect(condition_image, hdr)
return condition_image
@spaces.GPU
@timer_func
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
print("Starting image processing...")
torch.cuda.empty_cache()
condition_image = prepare_image(input_image, resolution, hdr)
prompt = "masterpiece, best quality, highres"
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
options = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"image": condition_image,
"control_image": condition_image,
"width": condition_image.size[0],
"height": condition_image.size[1],
"strength": strength,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": torch.Generator(device=device).manual_seed(0),
}
print("Running inference...")
result = lazy_pipe(**options).images[0]
print("Image processing completed successfully")
# Convert input_image and result to numpy arrays
input_array = np.array(input_image)
result_array = np.array(result)
return [input_array, result_array]
def filter_items(
colors_list: Union[List, np.ndarray],
items_list: Union[List, np.ndarray],
items_to_remove: Union[List, np.ndarray]
) -> Tuple[Union[List, np.ndarray], Union[List, np.ndarray]]:
"""
Filters items and their corresponding colors from given lists, excluding
specified items.
Args:
colors_list: A list or numpy array of colors corresponding to items.
items_list: A list or numpy array of items.
items_to_remove: A list or numpy array of items to be removed.
Returns:
A tuple of two lists or numpy arrays: filtered colors and filtered
items.
"""
filtered_colors = []
filtered_items = []
for color, item in zip(colors_list, items_list):
if item not in items_to_remove:
filtered_colors.append(color)
filtered_items.append(item)
return filtered_colors, filtered_items
def get_segmentation_pipeline(
) -> Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]:
"""Method to load the segmentation pipeline
Returns:
Tuple[AutoImageProcessor, UperNetForSemanticSegmentation]: segmentation pipeline
"""
image_processor = AutoImageProcessor.from_pretrained(
"openmmlab/upernet-convnext-xlarge"
)
image_segmentor = UperNetForSemanticSegmentation.from_pretrained(
"openmmlab/upernet-convnext-xlarge"
)
return image_processor, image_segmentor
@torch.inference_mode()
@spaces.GPU
def segment_image(
image: Image,
image_processor: AutoImageProcessor,
image_segmentor: UperNetForSemanticSegmentation
) -> Image:
"""
Segments an image using a semantic segmentation model.
Args:
image (Image): The input image to be segmented.
image_processor (AutoImageProcessor): The processor to prepare the
image for segmentation.
image_segmentor (UperNetForSemanticSegmentation): The semantic
segmentation model used to identify different segments in the image.
Returns:
Image: The segmented image with each segment colored differently based
on its identified class.
"""
# image_processor, image_segmentor = get_segmentation_pipeline()
pixel_values = image_processor(image, return_tensors="pt").pixel_values
with torch.no_grad():
outputs = image_segmentor(pixel_values)
seg = image_processor.post_process_semantic_segmentation(
outputs, target_sizes=[image.size[::-1]])[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
palette = np.array(ade_palette())
for label, color in enumerate(palette):
color_seg[seg == label, :] = color
color_seg = color_seg.astype(np.uint8)
seg_image = Image.fromarray(color_seg).convert('RGB')
return seg_image
def get_depth_pipeline():
feature_extractor = AutoImageProcessor.from_pretrained("LiheYoung/depth-anything-large-hf",
torch_dtype=dtype)
depth_estimator = AutoModelForDepthEstimation.from_pretrained("LiheYoung/depth-anything-large-hf",
torch_dtype=dtype)
return feature_extractor, depth_estimator
@torch.inference_mode()
@spaces.GPU
def get_depth_image(
image: Image,
feature_extractor: AutoImageProcessor,
depth_estimator: AutoModelForDepthEstimation
) -> Image:
image_to_depth = feature_extractor(images=image, return_tensors="pt").to(device)
with torch.no_grad():
depth_map = depth_estimator(**image_to_depth).predicted_depth
width, height = image.size
depth_map = torch.nn.functional.interpolate(
depth_map.unsqueeze(1).float(),
size=(height, width),
mode="bicubic",
align_corners=False,
)
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
image = torch.cat([depth_map] * 3, dim=1)
image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
return image
def resize_dimensions(dimensions, target_size):
"""
Resize PIL to target size while maintaining aspect ratio
If smaller than target size leave it as is
"""
width, height = dimensions
# Check if both dimensions are smaller than the target size
if width < target_size and height < target_size:
return dimensions
# Determine the larger side
if width > height:
# Calculate the aspect ratio
aspect_ratio = height / width
# Resize dimensions
return (target_size, int(target_size * aspect_ratio))
else:
# Calculate the aspect ratio
aspect_ratio = width / height
# Resize dimensions
return (int(target_size * aspect_ratio), target_size)
def flush():
gc.collect()
torch.cuda.empty_cache()
class ControlNetDepthDesignModelMulti:
""" Produces random noise images """
def __init__(self):
""" Initialize your model(s) here """
#os.environ['HF_HUB_OFFLINE'] = "True"
self.seed = 323*111
self.neg_prompt = "window, door, low resolution, banner, logo, watermark, text, deformed, blurry, out of focus, surreal, ugly, beginner"
self.control_items = ["windowpane;window", "door;double;door"]
self.additional_quality_suffix = "interior design, 4K, high resolution, photorealistic"
@spaces.GPU
def generate_design(self, empty_room_image: Image, prompt: str, guidance_scale: int = 10, num_steps: int = 50, strength: float =0.9, img_size: int = 640) -> Image:
"""
Given an image of an empty room and a prompt
generate the designed room according to the prompt
Inputs -
empty_room_image - An RGB PIL Image of the empty room
prompt - Text describing the target design elements of the room
Returns -
design_image - PIL Image of the same size as the empty room image
If the size is not the same the submission will fail.
"""
print(prompt)
flush()
self.generator = torch.Generator(device=device).manual_seed(self.seed)
pos_prompt = prompt + f', {self.additional_quality_suffix}'
orig_w, orig_h = empty_room_image.size
new_width, new_height = resize_dimensions(empty_room_image.size, img_size)
input_image = empty_room_image.resize((new_width, new_height))
real_seg = np.array(segment_image(input_image,
seg_image_processor,
image_segmentor))
unique_colors = np.unique(real_seg.reshape(-1, real_seg.shape[2]), axis=0)
unique_colors = [tuple(color) for color in unique_colors]
segment_items = [map_colors_rgb(i) for i in unique_colors]
chosen_colors, segment_items = filter_items(
colors_list=unique_colors,
items_list=segment_items,
items_to_remove=self.control_items
)
mask = np.zeros_like(real_seg)
for color in chosen_colors:
color_matches = (real_seg == color).all(axis=2)
mask[color_matches] = 1
image_np = np.array(input_image)
image = Image.fromarray(image_np).convert("RGB")
mask_image = Image.fromarray((mask * 255).astype(np.uint8)).convert("RGB")
segmentation_cond_image = Image.fromarray(real_seg).convert("RGB")
image_depth = get_depth_image(image, depth_feature_extractor, depth_estimator)
# generate image that would be used as IP-adapter
flush()
new_width_ip = int(new_width / 8) * 8
new_height_ip = int(new_height / 8) * 8
ip_image = guide_pipe(pos_prompt,
num_inference_steps=num_steps,
negative_prompt=self.neg_prompt,
height=new_height_ip,
width=new_width_ip,
generator=[self.generator]).images[0]
flush()
generated_image = pipe(
prompt=pos_prompt,
negative_prompt=self.neg_prompt,
num_inference_steps=num_steps,
strength=strength,
guidance_scale=guidance_scale,
generator=[self.generator],
image=image,
mask_image=mask_image,
ip_adapter_image=ip_image,
control_image=[image_depth, segmentation_cond_image],
controlnet_conditioning_scale=[0.5, 0.5]
).images[0]
flush()
design_image = generated_image.resize(
(orig_w, orig_h), Image.Resampling.LANCZOS
)
return design_image
def on_submit(image, text, num_steps, guidance_scale, seed, strength, a_prompt, n_prompt, img_size):
model.seed = seed
model.neg_prompt = n_prompt
model.additional_quality_suffix = a_prompt
with torch.no_grad():
out_img = model.generate_design(image, text, guidance_scale=guidance_scale, num_steps=num_steps, strength=strength, img_size=img_size)
return out_img
submit.click(on_submit, inputs=[input_image, input_text, num_steps, guidance_scale, seed, strength, a_prompt, n_prompt, img_size], outputs=design_image)
examples = gr.Examples(examples=[["imgs/bedroom_1.jpg", "An elegantly appointed bedroom in the Art Deco style, featuring a grand king-size bed with geometric bedding, a luxurious velvet armchair, and a mirrored nightstand that reflects the room's opulence. Art Deco-inspired artwork adds a touch of glamour"], ["imgs/bedroom_2.jpg", "A bedroom that exudes French country charm with a soft upholstered bed, walls adorned with floral wallpaper, and a vintage wooden wardrobe. A crystal chandelier casts a warm, inviting glow over the space"], ["imgs/dinning_room_1.jpg", "A cozy dining room that captures the essence of rustic charm with a solid wooden farmhouse table at its core, surrounded by an eclectic mix of mismatched chairs. An antique sideboard serves as a statement piece, and the ambiance is warmly lit by a series of quaint Edison bulbs dangling from the ceiling"], ["imgs/dinning_room_3.jpg", "A dining room that epitomizes contemporary elegance, anchored by a sleek, minimalist dining table paired with stylish modern chairs. Artistic lighting fixtures create a focal point above, while the surrounding minimalist decor ensures the space feels open, airy, and utterly modern"], ["imgs/image_1.jpg", "A glamorous master bedroom in Hollywood Regency style, boasting a plush tufted headboard, mirrored furniture reflecting elegance, luxurious fabrics in rich textures, and opulent gold accents for a touch of luxury."], ["imgs/image_2.jpg", "A vibrant living room with a tropical theme, complete with comfortable rattan furniture, large leafy plants bringing the outdoors in, bright cushions adding pops of color, and bamboo blinds for natural light control."], ["imgs/living_room_1.jpg", "A stylish living room embracing mid-century modern aesthetics, featuring a vintage teak coffee table at its center, complemented by a classic sunburst clock on the wall and a cozy shag rug underfoot, creating a warm and inviting atmosphere"]],
inputs=[input_image, input_text], cache_examples=False)
controlnet_depth= ControlNetModel.from_pretrained(
"controlnet_depth", torch_dtype=dtype, use_safetensors=True)
controlnet_seg = ControlNetModel.from_pretrained(
"own_controlnet", torch_dtype=dtype, use_safetensors=True)
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"SG161222/Realistic_Vision_V6.0_B1_noVAE",
#"models/runwayml--stable-diffusion-inpainting",
controlnet=[controlnet_depth, controlnet_seg],
safety_checker=None,
torch_dtype=dtype
)
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models",
weight_name="ip-adapter_sd15.bin")
pipe.set_ip_adapter_scale(0.4)
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to(device)
guide_pipe = StableDiffusionXLPipeline.from_pretrained("segmind/SSD-1B",
torch_dtype=dtype, use_safetensors=True, variant="fp16")
guide_pipe = guide_pipe.to(device)
seg_image_processor, image_segmentor = get_segmentation_pipeline()
depth_feature_extractor, depth_estimator = get_depth_pipeline()
depth_estimator = depth_estimator.to(device)
download_models()
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
lazy_pipe = LazyLoadPipeline()
lazy_pipe.load()
def main():
model = ControlNetDepthDesignModelMulti()
print('Models uploaded successfully')
title = "# Just try zeroGPU"
description = """
For test only
"""
with gr.Blocks() as demo:
gr.Markdown(title)
gr.Markdown(description)
demo.queue().launch(share=False)
if __name__ == '__main__':
main()
|