File size: 9,039 Bytes
86f2d3a
 
 
 
 
 
 
 
62a9f8b
 
1061dba
86f2d3a
877913f
86f2d3a
 
 
 
 
877913f
 
4fb52dd
 
 
 
 
 
 
 
 
 
 
86f2d3a
4fb52dd
 
 
 
 
86f2d3a
 
 
 
 
 
 
 
877913f
86f2d3a
 
 
 
 
877913f
 
 
 
 
86f2d3a
 
62a9f8b
 
86f2d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1fa828
86f2d3a
 
877913f
86f2d3a
 
 
 
 
0c73fdd
 
 
 
 
 
 
 
 
 
 
 
86f2d3a
 
 
 
 
 
 
 
 
877913f
 
 
 
 
 
 
86f2d3a
 
 
 
 
 
 
 
 
877913f
86f2d3a
 
 
877913f
 
 
86f2d3a
 
877913f
 
 
86f2d3a
 
877913f
 
 
 
 
 
5d1e3ac
 
 
 
 
 
 
 
 
 
 
86f2d3a
 
 
 
 
 
 
 
5d1e3ac
 
877913f
 
5d1e3ac
877913f
5d1e3ac
 
877913f
86f2d3a
5d1e3ac
 
 
 
 
 
 
 
86f2d3a
 
1061dba
877913f
86f2d3a
 
 
 
 
 
877913f
86f2d3a
877913f
86f2d3a
877913f
 
86f2d3a
 
 
877913f
86f2d3a
b240251
 
877913f
86f2d3a
877913f
86f2d3a
877913f
86f2d3a
 
877913f
86f2d3a
 
 
 
 
 
 
 
 
 
877913f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

import sys
import time

import printj
from transformers import pipeline  # , set_seed
import numpy as np
import pandas as pd
# import nltk
import re
import streamlit as st


class StoryGenerator:
    def __init__(self):
        self.initialise_models()
        self.stats_df = pd.DataFrame(data=[], columns=[])
        self.stories = []
        self.data = []

    @staticmethod
    @st.cache(allow_output_mutation=True)
    def get_generator():
        return pipeline('text-generation', model='gpt2')

    @staticmethod
    @st.cache(allow_output_mutation=True)
    def get_classifier():
        return pipeline("text-classification",
                        model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)

    def initialise_models(self):
        # start = time.time()
        self.generator = self.get_generator()
        self.classifier = self.get_classifier()
        # initialising_time = time.time()-start
        # print(f'Initialising Time: {initialising_time}')
        # set_seed(42)
        # sys.exit()

    def reset():
        self.clear_stories()
        self.clear_stats()

    def clear_stories(self):
        self.data = []
        self.stories = []

    def clear_stats(self):
        self.stats_df = pd.DataFrame(data=[], columns=[])

    def get_emotion(self, text):
        emotions = self.classifier(text)
        emotion = max(emotions[0], key=lambda x: x['score'])
        return emotion

    @staticmethod
    def get_num_token(text):
        # return len(nltk.word_tokenize(text))
        return len(re.findall(r'\w+', text))

    @staticmethod
    def check_show_emotion(confidence_score, frequency, w):
        frequency_penalty = 1 - frequency
        probability_emote = w * confidence_score + (1-w) * frequency_penalty
        return probability_emote > np.random.random_sample()

    def story(self,
              story_till_now="Hello, I'm a language model,",
              num_generation=4,
              length=10):
        # last_length = 0

        for i in range(num_generation):
            last_length = len(story_till_now)
            genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(story_till_now) +
                                                     length, num_return_sequences=1)
            story_till_now = genreate_robot_sentence[0]['generated_text']
            new_sentence = story_till_now[last_length:]
            emotion = self.get_emotion(new_sentence)
            # printj.yellow(f'Sentence {i}:')
            # story_to_print = f'{printj.ColorText.cyan(story_till_now[:last_length])}{printj.ColorText.green(story_till_now[last_length:])}\n'
            # print(story_to_print)
            # printj.purple(f'Emotion: {emotion}')
        return story_till_now, emotion
    
    def next_sentence(self,
            story_till_now="Hello, I'm a language model,",
            length=10):
        last_length = len(story_till_now)
        genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(story_till_now) +
                                                    length, num_return_sequences=1)
        story_till_now = genreate_robot_sentence[0]['generated_text']
        new_sentence = story_till_now[last_length:]
        emotion = self.get_emotion(new_sentence)
        return story_till_now, emotion, new_sentence
        

    def auto_ist(self,
                 story_till_now="Hello, I'm a language model,",
                 num_generation=4,
                 length=20, reaction_weight=0.5):
        stats_df = pd.DataFrame(data=[], columns=[])
        stats_dict = dict()
        num_reactions = 0
        reaction_frequency = 0
        emotion = self.get_emotion(story_till_now)  # first line emotion
        story_data = [{
            'sentence': story_till_now,
            'turn': 'first',
            'emotion': emotion['label'],
            'confidence_score': emotion['score'],
        }]
        for i in range(num_generation):
            # Text generation for User
            last_length = len(story_till_now)
            printj.cyan(story_till_now)
            printj.red.bold_on_white(
                f'loop: {i}; generate user text; length: {last_length}')
            genreate_user_sentence = self.generator(story_till_now, max_length=self.get_num_token(
                story_till_now)+length, num_return_sequences=1)
            story_till_now = genreate_user_sentence[0]['generated_text']
            new_sentence_user = story_till_now[last_length:]

            printj.red.bold_on_white(f'loop: {i}; check emotion')
            # Emotion self.classifier for User
            emotion_user = self.get_emotion(new_sentence_user)
            if emotion_user['label'] == 'neutral':
                show_emotion_user = False
            else:
                reaction_frequency = num_reactions/(i+1)
                show_emotion_user = self.check_show_emotion(
                    confidence_score=emotion_user['score'], frequency=reaction_frequency, w=reaction_weight)
            if show_emotion_user:
                num_reactions += 1

            story_data.append({
                'sentence': new_sentence_user,
                'turn': 'user',
                'emotion': emotion_user['label'],
                'confidence_score': emotion_user['score'],
            })
            stats_dict['sentence_no'] = i
            stats_dict['turn'] = 'user'
            stats_dict['sentence'] = new_sentence_user
            stats_dict['show_emotion'] = show_emotion_user
            stats_dict['emotion_label'] = emotion_user['label']
            stats_dict['emotion_score'] = emotion_user['score']
            stats_dict['num_reactions'] = num_reactions
            stats_dict['reaction_frequency'] = reaction_frequency
            stats_dict['reaction_weight'] = reaction_weight
            stats_df = pd.concat(
                [stats_df, pd.DataFrame(stats_dict, index=[f'idx_{i}'])])
            # Text generation for Robot
            last_length = len(story_till_now)
            printj.cyan(story_till_now)
            printj.red.bold_on_white(
                f'loop: {i}; generate robot text; length: {last_length}')
            genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(
                story_till_now)+length, num_return_sequences=1)
            story_till_now = genreate_robot_sentence[0]['generated_text']
            new_sentence_robot = story_till_now[last_length:]
            emotion_robot = self.get_emotion(new_sentence_robot)

            story_data.append({
                'sentence': new_sentence_robot,
                'turn': 'robot',
                'emotion': emotion_robot['label'],
                'confidence_score': emotion_robot['score'],
            })
            stats_dict['sentence_no'] = i
            stats_dict['turn'] = 'robot'
            stats_dict['sentence'] = new_sentence_robot
            stats_dict['show_emotion'] = None
            stats_dict['emotion_label'] = emotion_robot['label']
            stats_dict['emotion_score'] = emotion_robot['score']
            stats_dict['num_reactions'] = None
            stats_dict['reaction_frequency'] = None
            stats_dict['reaction_weight'] = None
            stats_df = pd.concat(
                [stats_df, pd.DataFrame(stats_dict, index=[f'idx_{i}'])])

        return stats_df, story_till_now, story_data

    def get_stats(self,
                  story_till_now="Hello, I'm a language model,",
                  num_generation=4,
                  length=20, reaction_weight=-1, num_tests=2):
        use_random_w = reaction_weight == -1
        # self.stories = []
        try:
            num_rows = max(self.stats_df.story_id)+1
        except Exception:
            num_rows = 0
        for story_id in range(num_tests):
            if use_random_w:
                # reaction_weight = np.random.random_sample()
                reaction_weight = np.round(np.random.random_sample(), 1)
            stats_df0, _story_till_now, story_data = self.auto_ist(
                story_till_now=story_till_now,
                num_generation=num_generations,
                length=length, reaction_weight=reaction_weight)
            stats_df0.insert(loc=0, column='story_id', value=story_id+num_rows)

            # stats_df0['story_id'] = story_id
            self.stats_df = pd.concat([self.stats_df, stats_df0])
            printj.yellow(f'story_id: {story_id}')
            printj.green(stats_df0)
            self.stories.append(_story_till_now)
            self.data.append(story_data)
        self.stats_df = self.stats_df.reset_index(drop=True)
        print(self.stats_df)

    def save_stats(self, path='pandas_simple.xlsx'):
        writer = pd.ExcelWriter(path, engine='xlsxwriter')

        # Convert the dataframe to an XlsxWriter Excel object.
        self.stats_df.to_excel(writer, sheet_name='IST')

        # Close the Pandas Excel writer and output the Excel file.
        writer.save()