Spaces:
Runtime error
Runtime error
File size: 9,039 Bytes
86f2d3a 62a9f8b 1061dba 86f2d3a 877913f 86f2d3a 877913f 4fb52dd 86f2d3a 4fb52dd 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 62a9f8b 86f2d3a c1fa828 86f2d3a 877913f 86f2d3a 0c73fdd 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f 5d1e3ac 86f2d3a 5d1e3ac 877913f 5d1e3ac 877913f 5d1e3ac 877913f 86f2d3a 5d1e3ac 86f2d3a 1061dba 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a b240251 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f 86f2d3a 877913f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import sys
import time
import printj
from transformers import pipeline # , set_seed
import numpy as np
import pandas as pd
# import nltk
import re
import streamlit as st
class StoryGenerator:
def __init__(self):
self.initialise_models()
self.stats_df = pd.DataFrame(data=[], columns=[])
self.stories = []
self.data = []
@staticmethod
@st.cache(allow_output_mutation=True)
def get_generator():
return pipeline('text-generation', model='gpt2')
@staticmethod
@st.cache(allow_output_mutation=True)
def get_classifier():
return pipeline("text-classification",
model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True)
def initialise_models(self):
# start = time.time()
self.generator = self.get_generator()
self.classifier = self.get_classifier()
# initialising_time = time.time()-start
# print(f'Initialising Time: {initialising_time}')
# set_seed(42)
# sys.exit()
def reset():
self.clear_stories()
self.clear_stats()
def clear_stories(self):
self.data = []
self.stories = []
def clear_stats(self):
self.stats_df = pd.DataFrame(data=[], columns=[])
def get_emotion(self, text):
emotions = self.classifier(text)
emotion = max(emotions[0], key=lambda x: x['score'])
return emotion
@staticmethod
def get_num_token(text):
# return len(nltk.word_tokenize(text))
return len(re.findall(r'\w+', text))
@staticmethod
def check_show_emotion(confidence_score, frequency, w):
frequency_penalty = 1 - frequency
probability_emote = w * confidence_score + (1-w) * frequency_penalty
return probability_emote > np.random.random_sample()
def story(self,
story_till_now="Hello, I'm a language model,",
num_generation=4,
length=10):
# last_length = 0
for i in range(num_generation):
last_length = len(story_till_now)
genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(story_till_now) +
length, num_return_sequences=1)
story_till_now = genreate_robot_sentence[0]['generated_text']
new_sentence = story_till_now[last_length:]
emotion = self.get_emotion(new_sentence)
# printj.yellow(f'Sentence {i}:')
# story_to_print = f'{printj.ColorText.cyan(story_till_now[:last_length])}{printj.ColorText.green(story_till_now[last_length:])}\n'
# print(story_to_print)
# printj.purple(f'Emotion: {emotion}')
return story_till_now, emotion
def next_sentence(self,
story_till_now="Hello, I'm a language model,",
length=10):
last_length = len(story_till_now)
genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(story_till_now) +
length, num_return_sequences=1)
story_till_now = genreate_robot_sentence[0]['generated_text']
new_sentence = story_till_now[last_length:]
emotion = self.get_emotion(new_sentence)
return story_till_now, emotion, new_sentence
def auto_ist(self,
story_till_now="Hello, I'm a language model,",
num_generation=4,
length=20, reaction_weight=0.5):
stats_df = pd.DataFrame(data=[], columns=[])
stats_dict = dict()
num_reactions = 0
reaction_frequency = 0
emotion = self.get_emotion(story_till_now) # first line emotion
story_data = [{
'sentence': story_till_now,
'turn': 'first',
'emotion': emotion['label'],
'confidence_score': emotion['score'],
}]
for i in range(num_generation):
# Text generation for User
last_length = len(story_till_now)
printj.cyan(story_till_now)
printj.red.bold_on_white(
f'loop: {i}; generate user text; length: {last_length}')
genreate_user_sentence = self.generator(story_till_now, max_length=self.get_num_token(
story_till_now)+length, num_return_sequences=1)
story_till_now = genreate_user_sentence[0]['generated_text']
new_sentence_user = story_till_now[last_length:]
printj.red.bold_on_white(f'loop: {i}; check emotion')
# Emotion self.classifier for User
emotion_user = self.get_emotion(new_sentence_user)
if emotion_user['label'] == 'neutral':
show_emotion_user = False
else:
reaction_frequency = num_reactions/(i+1)
show_emotion_user = self.check_show_emotion(
confidence_score=emotion_user['score'], frequency=reaction_frequency, w=reaction_weight)
if show_emotion_user:
num_reactions += 1
story_data.append({
'sentence': new_sentence_user,
'turn': 'user',
'emotion': emotion_user['label'],
'confidence_score': emotion_user['score'],
})
stats_dict['sentence_no'] = i
stats_dict['turn'] = 'user'
stats_dict['sentence'] = new_sentence_user
stats_dict['show_emotion'] = show_emotion_user
stats_dict['emotion_label'] = emotion_user['label']
stats_dict['emotion_score'] = emotion_user['score']
stats_dict['num_reactions'] = num_reactions
stats_dict['reaction_frequency'] = reaction_frequency
stats_dict['reaction_weight'] = reaction_weight
stats_df = pd.concat(
[stats_df, pd.DataFrame(stats_dict, index=[f'idx_{i}'])])
# Text generation for Robot
last_length = len(story_till_now)
printj.cyan(story_till_now)
printj.red.bold_on_white(
f'loop: {i}; generate robot text; length: {last_length}')
genreate_robot_sentence = self.generator(story_till_now, max_length=self.get_num_token(
story_till_now)+length, num_return_sequences=1)
story_till_now = genreate_robot_sentence[0]['generated_text']
new_sentence_robot = story_till_now[last_length:]
emotion_robot = self.get_emotion(new_sentence_robot)
story_data.append({
'sentence': new_sentence_robot,
'turn': 'robot',
'emotion': emotion_robot['label'],
'confidence_score': emotion_robot['score'],
})
stats_dict['sentence_no'] = i
stats_dict['turn'] = 'robot'
stats_dict['sentence'] = new_sentence_robot
stats_dict['show_emotion'] = None
stats_dict['emotion_label'] = emotion_robot['label']
stats_dict['emotion_score'] = emotion_robot['score']
stats_dict['num_reactions'] = None
stats_dict['reaction_frequency'] = None
stats_dict['reaction_weight'] = None
stats_df = pd.concat(
[stats_df, pd.DataFrame(stats_dict, index=[f'idx_{i}'])])
return stats_df, story_till_now, story_data
def get_stats(self,
story_till_now="Hello, I'm a language model,",
num_generation=4,
length=20, reaction_weight=-1, num_tests=2):
use_random_w = reaction_weight == -1
# self.stories = []
try:
num_rows = max(self.stats_df.story_id)+1
except Exception:
num_rows = 0
for story_id in range(num_tests):
if use_random_w:
# reaction_weight = np.random.random_sample()
reaction_weight = np.round(np.random.random_sample(), 1)
stats_df0, _story_till_now, story_data = self.auto_ist(
story_till_now=story_till_now,
num_generation=num_generations,
length=length, reaction_weight=reaction_weight)
stats_df0.insert(loc=0, column='story_id', value=story_id+num_rows)
# stats_df0['story_id'] = story_id
self.stats_df = pd.concat([self.stats_df, stats_df0])
printj.yellow(f'story_id: {story_id}')
printj.green(stats_df0)
self.stories.append(_story_till_now)
self.data.append(story_data)
self.stats_df = self.stats_df.reset_index(drop=True)
print(self.stats_df)
def save_stats(self, path='pandas_simple.xlsx'):
writer = pd.ExcelWriter(path, engine='xlsxwriter')
# Convert the dataframe to an XlsxWriter Excel object.
self.stats_df.to_excel(writer, sheet_name='IST')
# Close the Pandas Excel writer and output the Excel file.
writer.save()
|