File size: 24,116 Bytes
36c5570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc06566
36c5570
 
 
 
fc06566
36c5570
 
 
 
 
 
 
fc06566
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36c5570
fc06566
 
 
 
 
 
 
36c5570
fc06566
36c5570
 
 
fc06566
 
 
36c5570
 
 
 
 
fc06566
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
# -*- coding: utf-8 -*-
"""
Created on Thu Jul 28 14:40:59 2022

@author: BM109X32G-10GPU-02
"""

import os
from collections import OrderedDict

import numpy as np
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import rdchem

from compound_constants import DAY_LIGHT_FG_SMARTS_LIST


def get_gasteiger_partial_charges(mol, n_iter=12):
    """
    Calculates list of gasteiger partial charges for each atom in mol object.
    Args: 
        mol: rdkit mol object.
        n_iter(int): number of iterations. Default 12.
    Returns: 
        list of computed partial charges for each atom.
    """
    Chem.rdPartialCharges.ComputeGasteigerCharges(mol, nIter=n_iter,
                                                  throwOnParamFailure=True)
    partial_charges = [float(a.GetProp('_GasteigerCharge')) for a in
                       mol.GetAtoms()]
    return partial_charges


def create_standardized_mol_id(smiles):
    """
    Args:
        smiles: smiles sequence.
    Returns: 
        inchi.
    """
    if check_smiles_validity(smiles):
        # remove stereochemistry
        smiles = AllChem.MolToSmiles(AllChem.MolFromSmiles(smiles),
                                     isomericSmiles=False)
        mol = Chem.AddHs(AllChem.MolFromSmiles(smiles))
        
        if not mol is None: # to catch weird issue with O=C1O[al]2oc(=O)c3ccc(cn3)c3ccccc3c3cccc(c3)c3ccccc3c3cc(C(F)(F)F)c(cc3o2)-c2ccccc2-c2cccc(c2)-c2ccccc2-c2cccnc21
            if '.' in smiles: # if multiple species, pick largest molecule
                mol_species_list = split_rdkit_mol_obj(mol)
                largest_mol = get_largest_mol(mol_species_list)
                inchi = AllChem.MolToInchi(largest_mol)
            else:
                inchi = AllChem.MolToInchi(mol)
            return inchi
        else:
            return
    else:
        return


def check_smiles_validity(smiles):
    """
    Check whether the smile can't be converted to rdkit mol object.
    """
    try:
        m = Chem.MolFromSmiles(smiles)
        if m:
            return True
        else:
            return False
    except Exception as e:
        return False


def split_rdkit_mol_obj(mol):
    """
    Split rdkit mol object containing multiple species or one species into a
    list of mol objects or a list containing a single object respectively.
    Args:
        mol: rdkit mol object.
    """
    smiles = AllChem.MolToSmiles(mol, isomericSmiles=True)
    smiles_list = smiles.split('.')
    mol_species_list = []
    for s in smiles_list:
        if check_smiles_validity(s):
            mol_species_list.append(AllChem.MolFromSmiles(s))
    return mol_species_list


def get_largest_mol(mol_list):
    """
    Given a list of rdkit mol objects, returns mol object containing the
    largest num of atoms. If multiple containing largest num of atoms,
    picks the first one.
    Args: 
        mol_list(list): a list of rdkit mol object.
    Returns:
        the largest mol.
    """
    num_atoms_list = [len(m.GetAtoms()) for m in mol_list]
    largest_mol_idx = num_atoms_list.index(max(num_atoms_list))
    return mol_list[largest_mol_idx]

def rdchem_enum_to_list(values):
    """values = {0: rdkit.Chem.rdchem.ChiralType.CHI_UNSPECIFIED, 
            1: rdkit.Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CW, 
            2: rdkit.Chem.rdchem.ChiralType.CHI_TETRAHEDRAL_CCW, 
            3: rdkit.Chem.rdchem.ChiralType.CHI_OTHER}
    """
    return [values[i] for i in range(len(values))]


def safe_index(alist, elem):
    """
    Return index of element e in list l. If e is not present, return the last index
    """
    try:
        return alist.index(elem)
    except ValueError:
        return len(alist) - 1


def get_atom_feature_dims(list_acquired_feature_names):
    """ tbd
    """
    return list(map(len, [CompoundKit.atom_vocab_dict[name] for name in list_acquired_feature_names]))


def get_bond_feature_dims(list_acquired_feature_names):
    """ tbd
    """
    list_bond_feat_dim = list(map(len, [CompoundKit.bond_vocab_dict[name] for name in list_acquired_feature_names]))
    # +1 for self loop edges
    return [_l + 1 for _l in list_bond_feat_dim]


class CompoundKit(object):
    """
    CompoundKit
    """
    atom_vocab_dict = {
        "atomic_num": list(range(1, 119)) + ['misc'],
        "chiral_tag": rdchem_enum_to_list(rdchem.ChiralType.values),
 
    }
    bond_vocab_dict = {
        "bond_dir": rdchem_enum_to_list(rdchem.BondDir.values),
        "bond_type": rdchem_enum_to_list(rdchem.BondType.values),
       
    }
    # float features
    atom_float_names = ["van_der_waals_radis", "partial_charge", 'mass']
    # bond_float_feats= ["bond_length", "bond_angle"]     # optional

    ### functional groups
    day_light_fg_smarts_list = DAY_LIGHT_FG_SMARTS_LIST
    day_light_fg_mo_list = [Chem.MolFromSmarts(smarts) for smarts in day_light_fg_smarts_list]

    morgan_fp_N = 200
    morgan2048_fp_N = 2048
    maccs_fp_N = 167

    period_table = Chem.GetPeriodicTable()

    ### atom

    @staticmethod
    def get_atom_value(atom, name):
        """get atom values"""
        if name == 'atomic_num':
            return atom.GetAtomicNum()
        elif name == 'chiral_tag':
            return atom.GetChiralTag()
        elif name == 'degree':
            return atom.GetDegree()
        elif name == 'explicit_valence':
            return atom.GetExplicitValence()
        elif name == 'formal_charge':
            return atom.GetFormalCharge()
        elif name == 'hybridization':
            return atom.GetHybridization()
        elif name == 'implicit_valence':
            return atom.GetImplicitValence()
        elif name == 'is_aromatic':
            return int(atom.GetIsAromatic())
        elif name == 'mass':
            return int(atom.GetMass())
        elif name == 'total_numHs':
            return atom.GetTotalNumHs()
        elif name == 'num_radical_e':
            return atom.GetNumRadicalElectrons()
        elif name == 'atom_is_in_ring':
            return int(atom.IsInRing())
        elif name == 'valence_out_shell':
            return CompoundKit.period_table.GetNOuterElecs(atom.GetAtomicNum())
        else:
            raise ValueError(name)

    @staticmethod
    def get_atom_feature_id(atom, name):
        """get atom features id"""
        assert name in CompoundKit.atom_vocab_dict, "%s not found in atom_vocab_dict" % name
        return safe_index(CompoundKit.atom_vocab_dict[name], CompoundKit.get_atom_value(atom, name))

    @staticmethod
    def get_atom_feature_size(name):
        """get atom features size"""
        assert name in CompoundKit.atom_vocab_dict, "%s not found in atom_vocab_dict" % name
        return len(CompoundKit.atom_vocab_dict[name])

    ### bond

    @staticmethod
    def get_bond_value(bond, name):
        """get bond values"""
        if name == 'bond_dir':
            return bond.GetBondDir()
        elif name == 'bond_type':
            return bond.GetBondType()
        elif name == 'is_in_ring':
            return int(bond.IsInRing())
        elif name == 'is_conjugated':
            return int(bond.GetIsConjugated())
        elif name == 'bond_stereo':
            return bond.GetStereo()
        else:
            raise ValueError(name)

    @staticmethod
    def get_bond_feature_id(bond, name):
        """get bond features id"""
        assert name in CompoundKit.bond_vocab_dict, "%s not found in bond_vocab_dict" % name
        return safe_index(CompoundKit.bond_vocab_dict[name], CompoundKit.get_bond_value(bond, name))

    @staticmethod
    def get_bond_feature_size(name):
        """get bond features size"""
        assert name in CompoundKit.bond_vocab_dict, "%s not found in bond_vocab_dict" % name
        return len(CompoundKit.bond_vocab_dict[name])

    ### fingerprint

    @staticmethod
    def get_morgan_fingerprint(mol, radius=2):
        """get morgan fingerprint"""
        nBits = CompoundKit.morgan_fp_N
        mfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=nBits)
        return [int(b) for b in mfp.ToBitString()]
    
    @staticmethod
    def get_morgan2048_fingerprint(mol, radius=2):
        """get morgan2048 fingerprint"""
        nBits = CompoundKit.morgan2048_fp_N
        mfp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=nBits)
        return [int(b) for b in mfp.ToBitString()]

    @staticmethod
    def get_maccs_fingerprint(mol):
        """get maccs fingerprint"""
        fp = AllChem.GetMACCSKeysFingerprint(mol)
        return [int(b) for b in fp.ToBitString()]

    ### functional groups

    @staticmethod
    def get_daylight_functional_group_counts(mol):
        """get daylight functional group counts"""
        fg_counts = []
        for fg_mol in CompoundKit.day_light_fg_mo_list:
            sub_structs = Chem.Mol.GetSubstructMatches(mol, fg_mol, uniquify=True)
            fg_counts.append(len(sub_structs))
        return fg_counts

    @staticmethod
    def get_ring_size(mol):
        """return (N,6) list"""
        rings = mol.GetRingInfo()
        rings_info = []
        for r in rings.AtomRings():
            rings_info.append(r)
        ring_list = []
        for atom in mol.GetAtoms():
            atom_result = []
            for ringsize in range(3, 9):
                num_of_ring_at_ringsize = 0
                for r in rings_info:
                    if len(r) == ringsize and atom.GetIdx() in r:
                        num_of_ring_at_ringsize += 1
                if num_of_ring_at_ringsize > 8:
                    num_of_ring_at_ringsize = 9
                atom_result.append(num_of_ring_at_ringsize)
            
            ring_list.append(atom_result)
        return ring_list

    @staticmethod
    def atom_to_feat_vector(atom):
        """ tbd """
        atom_names = {
            "atomic_num": safe_index(CompoundKit.atom_vocab_dict["atomic_num"], atom.GetAtomicNum()),

        }
        return atom_names

    @staticmethod
    def get_atom_names(mol):
        """get atom name list
        TODO: to be remove in the future
        """
        atom_features_dicts = []
        Chem.rdPartialCharges.ComputeGasteigerCharges(mol)
        for i, atom in enumerate(mol.GetAtoms()):
            atom_features_dicts.append(CompoundKit.atom_to_feat_vector(atom))

        ring_list = CompoundKit.get_ring_size(mol)
        for i, atom in enumerate(mol.GetAtoms()):
            atom_features_dicts[i]['in_num_ring_with_size3'] = safe_index(
                    CompoundKit.atom_vocab_dict['in_num_ring_with_size3'], ring_list[i][0])
            atom_features_dicts[i]['in_num_ring_with_size4'] = safe_index(
                    CompoundKit.atom_vocab_dict['in_num_ring_with_size4'], ring_list[i][1])
            atom_features_dicts[i]['in_num_ring_with_size5'] = safe_index(
                    CompoundKit.atom_vocab_dict['in_num_ring_with_size5'], ring_list[i][2])
            atom_features_dicts[i]['in_num_ring_with_size6'] = safe_index(
                    CompoundKit.atom_vocab_dict['in_num_ring_with_size6'], ring_list[i][3])
            atom_features_dicts[i]['in_num_ring_with_size7'] = safe_index(
                    CompoundKit.atom_vocab_dict['in_num_ring_with_size7'], ring_list[i][4])
            atom_features_dicts[i]['in_num_ring_with_size8'] = safe_index(
                    CompoundKit.atom_vocab_dict['in_num_ring_with_size8'], ring_list[i][5])

        return atom_features_dicts
        
    @staticmethod
    def check_partial_charge(atom):
        """tbd"""
        pc = atom.GetDoubleProp('_GasteigerCharge')
        if pc != pc:
            # unsupported atom, replace nan with 0
            pc = 0
        if pc == float('inf'):
            # max 4 for other atoms, set to 10 here if inf is get
            pc = 10
        return pc


class Compound3DKit(object):
    """the 3Dkit of Compound"""
    @staticmethod
    def get_atom_poses(mol, conf):
        """tbd"""
        atom_poses = []
        for i, atom in enumerate(mol.GetAtoms()):
            if atom.GetAtomicNum() == 0:
                return [[0.0, 0.0, 0.0]] * len(mol.GetAtoms())
            pos = conf.GetAtomPosition(i)
            atom_poses.append([pos.x, pos.y, pos.z])
        return atom_poses

    @staticmethod
    def get_MMFF_atom_poses(mol, numConfs=None, return_energy=False):
        """the atoms of mol will be changed in some cases."""
        try:
            new_mol = Chem.AddHs(mol)
            res = AllChem.EmbedMultipleConfs(new_mol, numConfs=numConfs)
            ### MMFF generates multiple conformations
            res = AllChem.MMFFOptimizeMoleculeConfs(new_mol)
            #new_mol = Chem.RemoveHs(new_mol)
            index = np.argmin([x[1] for x in res])
            energy = res[index][1]
            conf = new_mol.GetConformer(id=int(index))
        except:
            new_mol = Chem.AddHs(mol)
            AllChem.Compute2DCoords(new_mol)
            energy = 0
            conf = new_mol.GetConformer()

        atom_poses = Compound3DKit.get_atom_poses(new_mol, conf)
        if return_energy:
            return new_mol, atom_poses, energy
        else:
            return new_mol, atom_poses

    @staticmethod
    def get_2d_atom_poses(mol):
        """get 2d atom poses"""
        AllChem.Compute2DCoords(mol)
        conf = mol.GetConformer()
        atom_poses = Compound3DKit.get_atom_poses(mol, conf)
        return atom_poses

    @staticmethod
    def get_bond_lengths(edges, atom_poses):
        """get bond lengths"""
        bond_lengths = []
        for src_node_i, tar_node_j in edges:
            bond_lengths.append(np.linalg.norm(atom_poses[tar_node_j] - atom_poses[src_node_i]))
        bond_lengths = np.array(bond_lengths, 'float32')
        return bond_lengths

    @staticmethod
    def get_superedge_angles(edges, atom_poses, dir_type='HT'):
        """get superedge angles"""
        def _get_vec(atom_poses, edge):
            return atom_poses[edge[1]] - atom_poses[edge[0]]
        def _get_angle(vec1, vec2):
            norm1 = np.linalg.norm(vec1)
            norm2 = np.linalg.norm(vec2)
            if norm1 == 0 or norm2 == 0:
                return 0
            vec1 = vec1 / (norm1 + 1e-5)    # 1e-5: prevent numerical errors
            vec2 = vec2 / (norm2 + 1e-5)
            angle = np.arccos(np.dot(vec1, vec2))
            return angle
        
        E = len(edges)
        edge_indices = np.arange(E)
        super_edges = []
        bond_angles = []
        bond_angle_dirs = []
        for tar_edge_i in range(E):
            tar_edge = edges[tar_edge_i]
            if dir_type == 'HT':
                src_edge_indices = edge_indices[edges[:, 1] == tar_edge[0]]
                
            elif dir_type == 'HH':
                src_edge_indices = edge_indices[edges[:, 1] == tar_edge[1]]
            else:
                raise ValueError(dir_type)
            for src_edge_i in src_edge_indices:
                if src_edge_i == tar_edge_i:
                    continue
                src_edge = edges[src_edge_i]
                src_vec = _get_vec(atom_poses, src_edge)
                tar_vec = _get_vec(atom_poses, tar_edge)
                super_edges.append([src_edge_i, tar_edge_i])
                angle = _get_angle(src_vec, tar_vec)
                bond_angles.append(angle)
                bond_angle_dirs.append(src_edge[1] == tar_edge[0])  # H -> H or H -> T

        if len(super_edges) == 0:
            super_edges = np.zeros([0, 2], 'int64')
            bond_angles = np.zeros([0,], 'float32')
        else:
            super_edges = np.array(super_edges, 'int64')
            bond_angles = np.array(bond_angles, 'float32')
        return super_edges, bond_angles, bond_angle_dirs



def new_smiles_to_graph_data(smiles, **kwargs):
    """
    Convert smiles to graph data.
    """
    mol = Chem.AddHs(AllChem.MolFromSmiles(smiles))
    if mol is None:
        return None
    data = new_mol_to_graph_data(mol)
    return data


def new_mol_to_graph_data(mol):
    """
    mol_to_graph_data
    Args:
        atom_features: Atom features.
        edge_features: Edge features.
        morgan_fingerprint: Morgan fingerprint.
        functional_groups: Functional groups.
    """
    if len(mol.GetAtoms()) == 0:
        return None

    atom_id_names = list(CompoundKit.atom_vocab_dict.keys()) + CompoundKit.atom_float_names
    bond_id_names = list(CompoundKit.bond_vocab_dict.keys())

    data = {}

    ### atom features
    data = {name: [] for name in atom_id_names}

    raw_atom_feat_dicts = CompoundKit.get_atom_names(mol)
    for atom_feat in raw_atom_feat_dicts:
        for name in atom_id_names:
            data[name].append(atom_feat[name])

    ### bond and bond features
    for name in bond_id_names:
        data[name] = []
    data['edges'] = []

    for bond in mol.GetBonds():
        i = bond.GetBeginAtomIdx()
        j = bond.GetEndAtomIdx()
        # i->j and j->i
        data['edges'] += [(i, j), (j, i)]
        for name in bond_id_names:
            bond_feature_id = CompoundKit.get_bond_feature_id(bond, name)
            data[name] += [bond_feature_id] * 2

    #### self loop
    N = len(data[atom_id_names[0]])
    for i in range(N):
        data['edges'] += [(i, i)]
    for name in bond_id_names:
        bond_feature_id = get_bond_feature_dims([name])[0] - 1   # self loop: value = len - 1
        data[name] += [bond_feature_id] * N

    ### make ndarray and check length
    for name in list(CompoundKit.atom_vocab_dict.keys()):
        data[name] = np.array(data[name], 'int64')
    for name in CompoundKit.atom_float_names:
        data[name] = np.array(data[name], 'float32')
    for name in bond_id_names:
        data[name] = np.array(data[name], 'int64')
    data['edges'] = np.array(data['edges'], 'int64')

    ### morgan fingerprint
    data['morgan_fp'] = np.array(CompoundKit.get_morgan_fingerprint(mol), 'int64')
    # data['morgan2048_fp'] = np.array(CompoundKit.get_morgan2048_fingerprint(mol), 'int64')
    data['maccs_fp'] = np.array(CompoundKit.get_maccs_fingerprint(mol), 'int64')
    data['daylight_fg_counts'] = np.array(CompoundKit.get_daylight_functional_group_counts(mol), 'int64')
    return data


def mol_to_graph_data(mol):
    """
    mol_to_graph_data
    Args:
        atom_features: Atom features.
        edge_features: Edge features.
        morgan_fingerprint: Morgan fingerprint.
        functional_groups: Functional groups.
    """
    if len(mol.GetAtoms()) == 0:
        return None

    atom_id_names = [
        "atomic_num"
    ]
    bond_id_names = [
        "bond_dir", "bond_type"
    ]
    
    data = {}
    for name in atom_id_names:
        data[name] = []
    data['mass'] = []
    for name in bond_id_names:
        data[name] = []
    data['edges'] = []

    ### atom features
    for i, atom in enumerate(mol.GetAtoms()):
        if atom.GetAtomicNum() == 0:
            return None
        for name in atom_id_names:
            
            data[name].append(CompoundKit.get_atom_feature_id(atom, name) + 1)  # 0: OOV
        data['mass'].append(CompoundKit.get_atom_value(atom, 'mass') * 0.01)

    ### bond features
    for bond in mol.GetBonds():
        
        i = bond.GetBeginAtomIdx()
        j = bond.GetEndAtomIdx()
        # i->j and j->i
        data['edges'] += [(i, j), (j, i)]
        for name in bond_id_names:
            bond_feature_id = CompoundKit.get_bond_feature_id(bond, name) + 1   # 0: OOV
            data[name] += [bond_feature_id] * 2
    num_atoms = mol.GetNumAtoms()
    atoms_list = []
    for i in range(num_atoms):
        atom = mol.GetAtomWithIdx(i)
        atoms_list.append(atom.GetSymbol())
    ### self loop (+2)

        
    N = len(data[atom_id_names[0]])
    for i in range(N):
        data['edges'] += [(i, i)]
    for name in bond_id_names:
        bond_feature_id = CompoundKit.get_bond_feature_size(name) + 2   # N + 2: self loop
        data[name] += [bond_feature_id] * N

    ### check whether edge exists
    if len(data['edges']) == 0: # mol has no bonds
        for name in bond_id_names:
            data[name] = np.zeros((0,), dtype="int64")
        data['edges'] = np.zeros((0, 2), dtype="int64")

    ### make ndarray and check length
    for name in atom_id_names:
        data[name] = np.array(data[name], 'int64')
    data['mass'] = np.array(data['mass'], 'float32')
    for name in bond_id_names:
        data[name] = np.array(data[name], 'int64')
    data['edges'] = np.array(data['edges'], 'int64')
    data['atoms'] = np.array(atoms_list)
    ### morgan fingerprint
    #data['morgan_fp'] = np.array(CompoundKit.get_morgan_fingerprint(mol), 'int64')
    # data['morgan2048_fp'] = np.array(CompoundKit.get_morgan2048_fingerprint(mol), 'int64')
    #data['maccs_fp'] = np.array(CompoundKit.get_maccs_fingerprint(mol), 'int64')
    #data['daylight_fg_counts'] = np.array(CompoundKit.get_daylight_functional_group_counts(mol), 'int64')
    #return data['bonds_dir'],data['adj_angle']
    return data


def mol_to_geognn_graph_data(mol, atom_poses, dir_type):
    """
    mol: rdkit molecule
    dir_type: direction type for bond_angle grpah
    """
    if len(mol.GetAtoms()) == 0:
        return None

    data = mol_to_graph_data(mol)

    data['atom_pos'] = np.array(atom_poses, 'float32')
    data['bond_length'] = Compound3DKit.get_bond_lengths(data['edges'], data['atom_pos'])
    # BondAngleGraph_edges, bond_angles, bond_angle_dirs = \
    #         Compound3DKit.get_superedge_angles(data['edges'], data['atom_pos'])
 #   data['BondAngleGraph_edges'] = BondAngleGraph_edges
 #   data['bond_angle'] = np.array(bond_angles, 'float32')
    data['adj_node'] = gen_adj(len(data['atoms']),data['edges'],data['bond_length'])
   # data['adj_edge'] = gen_adj(len(data['bond_dir']),data['BondAngleGraph_edges'],data['bond_angle'])
    return data['atoms'], data['adj_node']


def mol_to_geognn_graph_data_MMFF3d(smiles):
    """tbd"""
    mol = Chem.AddHs(AllChem.MolFromSmiles(smiles))
    if len(mol.GetAtoms()) <= 400:
        mol, atom_poses = Compound3DKit.get_MMFF_atom_poses(mol, numConfs=10)
    else:
        atom_poses = Compound3DKit.get_2d_atom_poses(mol)
    return mol_to_geognn_graph_data(mol, atom_poses, dir_type='HT')


def mol_to_geognn_graph_data_raw3d(mol):
    """tbd"""
    atom_poses = Compound3DKit.get_atom_poses(mol, mol.GetConformer())
    return mol_to_geognn_graph_data(mol, atom_poses, dir_type='HT')
def gen_adj(shape,edges,length):
    
    adj=edges
    e = shape
    ones = np.eye(e)

    #for i in range(e):
    for i in range (len(length)):
        if adj[i,0] != adj[i,1]:
            ones[adj[i,0],adj[i,1]]=(float(length[i] ))
                   
    return ones


if __name__ == "__main__":
    import pandas as pd 
    from tqdm import tqdm
    f = pd.read_csv (r"J:\screenacc\new4.csv")
    # re = []
    # pce = f['PCE']
    # for ind,smile in enumerate ( f.iloc[:,1]):
    #     print(ind)
    #     atom,adj = mol_to_geognn_graph_data_MMFF3d(smile)
    #     np.save('data/reg/train/adj'+str(ind)+'.npy',np.array(adj))
    #     re.append([atom,'data/reg/train/adj'+str(ind)+'.npy',pce[ind] ])
    # r = pd.DataFrame(re)
    # r.to_csv('data/reg/train/train.csv')
    # re = []

    # f = pd.read_csv(r'data/reg/test3.csv')
    # re = []
    # pce = f['PCE']
   
    # for ind,smile in enumerate ( f.iloc[:,1]):
    #     print(ind)
    #     atom,adj = mol_to_geognn_graph_data_MMFF3d(smile)
    #     np.save('data/reg/test/adj'+str(ind)+'.npy',np.array(adj))
    #     re.append([atom,'data/reg/test/adj'+str(ind)+'.npy',pce[ind] ])
    # r = pd.DataFrame(re)
    # r.to_csv('data/reg/test/test.csv')
    
    # f = pd.read_csv(r'val.csv')
    re = []
    pce = f['PCE']        
   
    for ind,smile in enumerate ( f.iloc[ 22000: ,0]):
        
        ind = ind + 22000
        print(ind)
        atom,adj = mol_to_geognn_graph_data_MMFF3d(smile)
        np.save('data/reg/val/adj'+str(ind)+'.npy',np.array(adj))
        re.append([atom,'data/reg/val/adj'+str(ind)+'.npy',pce[ind] ])
    r = pd.DataFrame(re)
    r.to_csv('data/reg/val/val22000.csv')