File size: 6,583 Bytes
2ba59d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# -*- coding: utf-8 -*-
"""
Created on Mon Sep  4 10:38:59 2023

@author: BM109X32G-10GPU-02
"""


from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np

from sklearn.datasets import make_blobs
import json
import numpy as np
import math
from tqdm import tqdm
from scipy import sparse
from sklearn.metrics import median_absolute_error,r2_score, mean_absolute_error,mean_squared_error
import pickle


import pandas as pd
import matplotlib.pyplot as plt
from rdkit import Chem

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Dense, Input, Flatten, Conv1D, MaxPooling1D, concatenate
from tensorflow.keras import metrics, optimizers
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau

def split_smiles(smiles, kekuleSmiles=True):
    try:
        mol = Chem.MolFromSmiles(smiles)
        smiles = Chem.MolToSmiles(mol, kekuleSmiles=kekuleSmiles)
    except:
        pass
    splitted_smiles = []
    for j, k in enumerate(smiles):
        if len(smiles) == 1:
            return [smiles]
        if j == 0:
            if k.isupper() and smiles[j + 1].islower() and smiles[j + 1] != "c":
                splitted_smiles.append(k + smiles[j + 1])
            else:
                splitted_smiles.append(k)
        elif j != 0 and j < len(smiles) - 1:
            if k.isupper() and smiles[j + 1].islower() and smiles[j + 1] != "c":
                splitted_smiles.append(k + smiles[j + 1])
            elif k.islower() and smiles[j - 1].isupper() and k != "c":
                pass
            else:
                splitted_smiles.append(k)

        elif j == len(smiles) - 1:
            if k.islower() and smiles[j - 1].isupper() and k != "c":
                pass
            else:
                splitted_smiles.append(k)
    return splitted_smiles

def get_maxlen(all_smiles, kekuleSmiles=True):
    maxlen = 0
    for smi in tqdm(all_smiles):
        spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
        if spt is None:
            continue
        maxlen = max(maxlen, len(spt))
    return maxlen
def get_dict(all_smiles, save_path, kekuleSmiles=True):
    words = [' ']
    for smi in tqdm(all_smiles):
        spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
        if spt is None:
            continue
        for w in spt:
            if w in words:
                continue
            else:
                words.append(w)
    with open(save_path, 'w') as js:
        json.dump(words, js)
    return words

def one_hot_coding(smi, words, kekuleSmiles=True, max_len=1000):
    coord_j = []
    coord_k = []
    spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
    if spt is None:
        return None
    for j,w in enumerate(spt):
        if j >= max_len:
            break
        try:
            k = words.index(w)
        except:
            continue
        coord_j.append(j)
        coord_k.append(k)
    data = np.repeat(1, len(coord_j))
    output = sparse.csr_matrix((data, (coord_j, coord_k)), shape=(max_len, len(words)))
    return output
def split_dataset(dataset, ratio):
    """Shuffle and split a dataset."""
   # np.random.seed(111)  # fix the seed for shuffle.
    #np.random.shuffle(dataset)
    n = int(ratio * len(dataset))
    return dataset[:n], dataset[n:]
def plot_confusion_matrix(cm, savename, title='Confusion Matrix'):

    plt.figure(figsize=(12, 8), dpi=100)
    np.set_printoptions(precision=2)
 
    ind_array = [np.arange(3)]
    x, y = np.meshgrid(ind_array, ind_array)
    for x_val, y_val in zip(x.flatten(), y.flatten()):
        c = cm[y_val][x_val]
        if c > 0.001:
            plt.text(x_val, y_val, "%0.2f" % (c,), color='red', fontsize=15, va='center', ha='center')
    
    plt.imshow(cm, interpolation='nearest', cmap=plt.cm.binary)
    plt.title(title)
    plt.colorbar()
    xlocations = np.array(range(len(classes)))
    plt.xticks(xlocations, classes, rotation=90)
    plt.yticks(xlocations, classes)
    plt.ylabel('Actual label')
    plt.xlabel('Predict label')
    
    # offset the tick
    tick_marks = np.array(range(len(classes))) + 0.5
    plt.gca().set_xticks(tick_marks, minor=True)
    plt.gca().set_yticks(tick_marks, minor=True)
    plt.gca().xaxis.set_ticks_position('none')
    plt.gca().yaxis.set_ticks_position('none')
    plt.grid(True, which='minor', linestyle='-')
    plt.gcf().subplots_adjust(bottom=0.15)
    
    # show confusion matrix
    plt.savefig(savename, format='png')
    plt.show()
def main(sm):
        with open("dict.json", "r", encoding="utf-8") as f:
            words = json.load(f)
 
        inchis = list([sm])
        rts = list([0])
        
        smiles, targets = [], []
        for i, inc in enumerate(tqdm(inchis)):
            mol = Chem.MolFromSmiles(inc)
            if mol is None:
                continue
            else:
                smi = Chem.MolToSmiles(mol)
                smiles.append(smi)
                targets.append(rts[i])
                
       
        
        features = []
        for i, smi in enumerate(tqdm(smiles)):
            xi = one_hot_coding(smi, words, max_len=600)
            if xi is not None:
                features.append(xi.todense())
        features = np.asarray(features)
        targets = np.asarray(targets)
        X_test=features
        Y_test=targets
        n_features=10
        
        model = RandomForestRegressor(n_estimators=100,  criterion='friedman_mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)
       
        from tensorflow.keras import backend as K
        
        load_model = pickle.load(open(r"predict.dat","rb"))
        Y_predict = load_model.predict(K.cast_to_floatx(X_test).reshape((np.size(X_test,0),np.size(X_test,1)*np.size(X_test,2))))
         #Y_predict = model.predict(X_test) 
        x = list(Y_test)
        y = list(Y_predict)
       
        return Y_predict
        
if __name__ == "__main__":
    x = main("CCCCCCC1=CC=C(C2(C3=CC=C(CCCCCC)C=C3)C3=CC4=C(C=C3C3=C2C=C(/C=C2\SC(=S)N(CC)C2=O)S3)C(C2=CC=C(CCCCCC)C=C2)(C2=CC=C(CCCCCC)C=C2)C2=C4SC(/C=C3\SC(=S)N(CC)C3=O)=C2)C=C1")