Spaces:
Running
Running
File size: 6,583 Bytes
2ba59d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# -*- coding: utf-8 -*-
"""
Created on Mon Sep 4 10:38:59 2023
@author: BM109X32G-10GPU-02
"""
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import make_blobs
import json
import numpy as np
import math
from tqdm import tqdm
from scipy import sparse
from sklearn.metrics import median_absolute_error,r2_score, mean_absolute_error,mean_squared_error
import pickle
import pandas as pd
import matplotlib.pyplot as plt
from rdkit import Chem
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
from tensorflow.keras.models import Model, load_model
from tensorflow.keras.layers import Dense, Input, Flatten, Conv1D, MaxPooling1D, concatenate
from tensorflow.keras import metrics, optimizers
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
def split_smiles(smiles, kekuleSmiles=True):
try:
mol = Chem.MolFromSmiles(smiles)
smiles = Chem.MolToSmiles(mol, kekuleSmiles=kekuleSmiles)
except:
pass
splitted_smiles = []
for j, k in enumerate(smiles):
if len(smiles) == 1:
return [smiles]
if j == 0:
if k.isupper() and smiles[j + 1].islower() and smiles[j + 1] != "c":
splitted_smiles.append(k + smiles[j + 1])
else:
splitted_smiles.append(k)
elif j != 0 and j < len(smiles) - 1:
if k.isupper() and smiles[j + 1].islower() and smiles[j + 1] != "c":
splitted_smiles.append(k + smiles[j + 1])
elif k.islower() and smiles[j - 1].isupper() and k != "c":
pass
else:
splitted_smiles.append(k)
elif j == len(smiles) - 1:
if k.islower() and smiles[j - 1].isupper() and k != "c":
pass
else:
splitted_smiles.append(k)
return splitted_smiles
def get_maxlen(all_smiles, kekuleSmiles=True):
maxlen = 0
for smi in tqdm(all_smiles):
spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
if spt is None:
continue
maxlen = max(maxlen, len(spt))
return maxlen
def get_dict(all_smiles, save_path, kekuleSmiles=True):
words = [' ']
for smi in tqdm(all_smiles):
spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
if spt is None:
continue
for w in spt:
if w in words:
continue
else:
words.append(w)
with open(save_path, 'w') as js:
json.dump(words, js)
return words
def one_hot_coding(smi, words, kekuleSmiles=True, max_len=1000):
coord_j = []
coord_k = []
spt = split_smiles(smi, kekuleSmiles=kekuleSmiles)
if spt is None:
return None
for j,w in enumerate(spt):
if j >= max_len:
break
try:
k = words.index(w)
except:
continue
coord_j.append(j)
coord_k.append(k)
data = np.repeat(1, len(coord_j))
output = sparse.csr_matrix((data, (coord_j, coord_k)), shape=(max_len, len(words)))
return output
def split_dataset(dataset, ratio):
"""Shuffle and split a dataset."""
# np.random.seed(111) # fix the seed for shuffle.
#np.random.shuffle(dataset)
n = int(ratio * len(dataset))
return dataset[:n], dataset[n:]
def plot_confusion_matrix(cm, savename, title='Confusion Matrix'):
plt.figure(figsize=(12, 8), dpi=100)
np.set_printoptions(precision=2)
ind_array = [np.arange(3)]
x, y = np.meshgrid(ind_array, ind_array)
for x_val, y_val in zip(x.flatten(), y.flatten()):
c = cm[y_val][x_val]
if c > 0.001:
plt.text(x_val, y_val, "%0.2f" % (c,), color='red', fontsize=15, va='center', ha='center')
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.binary)
plt.title(title)
plt.colorbar()
xlocations = np.array(range(len(classes)))
plt.xticks(xlocations, classes, rotation=90)
plt.yticks(xlocations, classes)
plt.ylabel('Actual label')
plt.xlabel('Predict label')
# offset the tick
tick_marks = np.array(range(len(classes))) + 0.5
plt.gca().set_xticks(tick_marks, minor=True)
plt.gca().set_yticks(tick_marks, minor=True)
plt.gca().xaxis.set_ticks_position('none')
plt.gca().yaxis.set_ticks_position('none')
plt.grid(True, which='minor', linestyle='-')
plt.gcf().subplots_adjust(bottom=0.15)
# show confusion matrix
plt.savefig(savename, format='png')
plt.show()
def main(sm):
with open("dict.json", "r", encoding="utf-8") as f:
words = json.load(f)
inchis = list([sm])
rts = list([0])
smiles, targets = [], []
for i, inc in enumerate(tqdm(inchis)):
mol = Chem.MolFromSmiles(inc)
if mol is None:
continue
else:
smi = Chem.MolToSmiles(mol)
smiles.append(smi)
targets.append(rts[i])
features = []
for i, smi in enumerate(tqdm(smiles)):
xi = one_hot_coding(smi, words, max_len=600)
if xi is not None:
features.append(xi.todense())
features = np.asarray(features)
targets = np.asarray(targets)
X_test=features
Y_test=targets
n_features=10
model = RandomForestRegressor(n_estimators=100, criterion='friedman_mse', max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=1.0, max_leaf_nodes=None, min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None, random_state=None, verbose=0, warm_start=False, ccp_alpha=0.0, max_samples=None)
from tensorflow.keras import backend as K
load_model = pickle.load(open(r"predict.dat","rb"))
Y_predict = load_model.predict(K.cast_to_floatx(X_test).reshape((np.size(X_test,0),np.size(X_test,1)*np.size(X_test,2))))
#Y_predict = model.predict(X_test)
x = list(Y_test)
y = list(Y_predict)
return Y_predict
if __name__ == "__main__":
x = main("CCCCCCC1=CC=C(C2(C3=CC=C(CCCCCC)C=C3)C3=CC4=C(C=C3C3=C2C=C(/C=C2\SC(=S)N(CC)C2=O)S3)C(C2=CC=C(CCCCCC)C=C2)(C2=CC=C(CCCCCC)C=C2)C2=C4SC(/C=C3\SC(=S)N(CC)C3=O)=C2)C=C1") |