Spaces:
Running
Running
File size: 10,845 Bytes
b5042f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import os
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
from share import *
import config
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from torchvision import transforms
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from cldm.model import create_model, load_state_dict
from models.ControlNet.ldm.models.diffusion.ddim import DDIMSampler
def init_model():
model = create_model(BASE_DIR+'/models/cldm_v15.yaml').cpu()
state_dict = load_state_dict(BASE_DIR+'/models/control_sd15_depth.pth')
model.load_state_dict(state_dict, strict=False)
# model.load_state_dict(state_dict)
model = model.cuda()
ddim_sampler = DDIMSampler(model)
return model, ddim_sampler
@torch.no_grad()
def process(model, ddim_sampler, input_image, prompt, a_prompt, n_prompt, num_samples,
ddim_steps, scale, seed, eta,
strength=1.0, detected_map=None, unknown_mask=None, save_memory=False, depth_pad=10):
"""
unknown mask has to be an array of shape (H, W) - should has values of (0, 255)
"""
with torch.no_grad():
H, W, C = input_image.shape
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if save_memory:
model.low_vram_shift(is_diffusing=False)
if save_memory:
model.low_vram_shift(is_diffusing=True)
# start from noising the input image
x0 = Image.fromarray(input_image).convert("RGB")
x0 = np.array(x0)
x0 = torch.from_numpy(x0).permute(2, 0, 1).float().to(model.device)
x0 = x0.unsqueeze(0).repeat(num_samples, 1, 1, 1)
x0 = (x0 / 127.5) - 1.0 # NOTE input image must be normalized to [-1, 1]
# encode input image
# NOTE ControlNet doesn't accept the raw input image
x0 = model.encode_first_stage(x0)
x0 = model.get_first_stage_encoding(x0).detach()
ddim_sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=eta, verbose=False, strength=strength)
ddim_steps = int(ddim_steps * strength) # actually DEPRECATED
# add noises to the maximum
ddim_steps_tensor = torch.full((x0.shape[0],), ddim_sampler.ddim_timesteps[-1]).to(model.device)
x_T = model.q_sample(x0, ddim_steps_tensor)
# control
if detected_map is None:
detected_map, _ = apply_midas(resize_image(input_image, H))
detected_map = HWC3(detected_map)
detected_map_resized = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map_resized).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
# if unknown_mask is not None:
# # HACK
# # unknown_mask_dilate = cv2.dilate(unknown_mask, kernel=np.ones((5, 5), np.uint8), iterations=2)
# unknown_mask_dilate = cv2.dilate(unknown_mask, kernel=np.ones((5, 5), np.uint8), iterations=1)
# # depth_mask = np.zeros_like(detected_map[..., 0])
# # depth_mask[detected_map[..., 0] != 0] = 1 # 1 -> object, 0 -> background
# # reversed_depth_mask = 1 - depth_mask # 0 -> object, 1 -> background
# # diffusion_mask = reversed_depth_mask + unknown_mask
# # unknown_mask_dilate = cv2.dilate(diffusion_mask, kernel=np.ones((5, 5), np.uint8), iterations=2)
# unknown_mask_dilate = Image.fromarray(unknown_mask_dilate.astype(np.uint8)).convert("L")
# unknown_mask_dilate = unknown_mask_dilate.resize((H // 8, W // 8), Image.NEAREST)
# unknown_mask_dilate = transforms.ToTensor()(unknown_mask_dilate).to(model.device)
# unknown_mask_dilate = unknown_mask_dilate.repeat(4, 1, 1)
# # only contains 0 and 1
# assert set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist()).issubset(set([0, 1]))
# else:
# unknown_mask_dilate = None
if unknown_mask is not None:
# # target: unknown region
# unknown_mask_image = np.copy(unknown_mask) # should be 0 - 255
# unknown_mask = unknown_mask.astype(np.float32)
# unknown_mask /= 255 # normalize it to 0 - 1
# target: unknown region + background
# HACK basically generate everything except known region
detected_map_image = Image.fromarray(detected_map.astype(np.uint8)).convert("L")
detected_map_np = np.array(detected_map_image)
background_mask = detected_map_np == depth_pad # bool
background_mask = background_mask.astype(np.float32) * 255 # 0 - 255
unknown_mask_image = unknown_mask + background_mask
# unknown_mask is still the unknown region
# will be used later to compose the generated region
unknown_mask = unknown_mask.astype(np.float32)
unknown_mask /= 255 # normalize it to 0 - 1
compose_flag = True
else:
detected_map_image = Image.fromarray(detected_map.astype(np.uint8)).convert("L")
detected_map_np = np.array(detected_map_image)
# # target: non-background region
# unknown_mask = (detected_map_np != depth_pad).astype(np.uint8)
# unknown_mask_image = (unknown_mask * 255.).astype(np.uint8)
# # Image.fromarray(unknown_mask_image).save("unknown.png")
# target: everything
unknown_mask = np.ones_like(detected_map_np)
unknown_mask_image = (unknown_mask * 255.).astype(np.uint8)
compose_flag = False
# HACK
# unknown_mask_dilate = np.copy(unknown_mask_image)
unknown_mask_dilate = cv2.dilate(unknown_mask_image, kernel=np.ones((5, 5), np.uint8), iterations=2)
unknown_mask_dilate = Image.fromarray(unknown_mask_dilate.astype(np.uint8)).convert("L")
unknown_mask_dilate = unknown_mask_dilate.resize((H // 8, W // 8), Image.NEAREST)
unknown_mask_dilate = transforms.ToTensor()(unknown_mask_dilate).to(model.device)
unknown_mask_dilate = unknown_mask_dilate.repeat(4, 1, 1)
# HACK make sure the mask only contains 0 and 1
try:
assert set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist()).issubset(set([0, 1])), set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist())
except AssertionError:
unknown_mask_dilate = torch.round(unknown_mask_dilate)
assert set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist()).issubset(set([0, 1])), set(torch.unique(unknown_mask_dilate).cpu().numpy().tolist())
samples, intermediates = ddim_sampler.sample(
ddim_steps, num_samples,
shape, cond, x0=x0, x_T=x_T, mask=unknown_mask_dilate,
verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond
)
if save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
results = []
for i in range(num_samples):
sample = x_samples[i]
# # HACK manually compose cropped generated region with the known region
# if compose_flag:
# # # unknown region + known region
# # input_image = Image.fromarray(input_image).convert("RGB")
# # input_image = np.array(input_image)
# # mask = np.repeat(unknown_mask[..., None], 3, axis=2)
# # new_sample = np.zeros_like(sample)
# # new_sample[mask == 1] = sample[mask == 1]
# # new_sample[mask == 0] = input_image[mask == 0]
# # sample = new_sample
# # non-background region
# detected_map_image = Image.fromarray(detected_map.astype(np.uint8)).convert("L")
# detected_map_np = np.array(detected_map_image)
# background_mask = (detected_map_np == depth_pad).astype(np.uint8)
# sample[background_mask == 1] = 255
results.append(sample)
return results
if __name__ == "__main__":
model, ddim_sampler = init_model()
block = gr.Blocks().queue()
with block:
with gr.Row():
gr.Markdown("## Control Stable Diffusion with Depth Maps")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
ips = [model, ddim_sampler, input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
block.launch(server_name='0.0.0.0')
|