File size: 5,741 Bytes
19d6aaf
 
 
 
a7626a2
 
 
 
 
 
 
 
19d6aaf
 
 
a7626a2
19d6aaf
a7626a2
 
19d6aaf
 
 
 
 
 
a7626a2
19d6aaf
bc52a9c
19d6aaf
 
a7626a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc52a9c
a7626a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc52a9c
a7626a2
 
 
 
 
 
 
 
 
 
bc52a9c
a7626a2
bc52a9c
 
 
a7626a2
 
bc52a9c
 
 
a7626a2
 
 
 
bc52a9c
a7626a2
 
19d6aaf
a7626a2
bc52a9c
 
 
 
 
 
 
35e13e5
 
 
 
 
 
 
 
 
a7626a2
 
 
 
 
 
 
 
35e13e5
a7626a2
19d6aaf
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
library(shiny)
library(bslib)
library(dplyr)
library(ggplot2)
library(data.table)
library(tidyr)
library(stringr)
library(Seurat)
library(readr)
library(purrr)
library(harmony)
library(scales)

ui <- page_sidebar(
  theme = bs_theme(bootswatch = "minty"),
  title = "EV Data Analysis and Visualization",
  sidebar = sidebar(
    fileInput("evFiles", "Choose EV CSV Files", multiple = TRUE, accept = ".csv"),
    
  ),
  plotOutput("scatter")
)

server <- function(input, output, session) {
  subsetted <- reactive({
    req(input$evFiles)
  })
  
  output$scatter <- renderPlot(
    {
      seurat_list <- list()
      if(is.null(input$evFiles))
        return()
      for (i in 1:nrow(input$evFiles)) {
        row <- input$evFiles[i,]
        message("Processing: ", row$name)
        
        # === 读取长格式数据 ===
        sc_data <- fread(row$datapath, data.table = FALSE)
        colnames(sc_data) <- c("symbol", "ev", "variable", "value")
        sc_data$value <- as.numeric(sc_data$value)
        
        sample_name <- unique(sc_data$symbol)
        if (length(sample_name) != 1) {
          warning("Multiple or missing sample names in file: ", basename(file))
          next
        }
        
        # === 长转宽格式 ===
        dat_wide <- pivot_wider(sc_data,
                                id_cols = ev,
                                names_from = variable,
                                values_from = value,
                                values_fill = 0)
        rownames(dat_wide) <- dat_wide$ev
        dat_wide <- dat_wide[, -1, drop = FALSE]
        
        # === 筛选 EV(至少1个蛋白表达值 ≥ 1)===
        valid_ev_idx <- apply(dat_wide, 1, function(x) sum(x >= 1) >= 2)
        dat_filtered <- dat_wide[valid_ev_idx, , drop = FALSE]
        n_ev <- nrow(dat_filtered)
        
        message("Number of EVs in ", sample_name, ": ", n_ev)
        
        group_size <- 10
        
        num_groups <- floor(n_ev / group_size)
        if (num_groups == 0) {
          message("EVs < group size in ", sample_name, ", skip.")
          next
        }
        
        # === 随机分组合并生成伪EV ===
        set.seed(123)
        sampled_ev_idx <- sample(1:n_ev, num_groups * group_size, replace = FALSE)
        dat_sub <- dat_filtered[sampled_ev_idx, , drop = FALSE]
        groups <- rep(1:num_groups, each = group_size)
        
        pseudo_ev_list <- lapply(unique(groups), function(g) {
          rows <- which(groups == g)
          colSums(dat_sub[rows, , drop = FALSE])
        })
        names(pseudo_ev_list) <- paste0(sample_name, "_sEV", seq_along(pseudo_ev_list))
        
        # ===  合并为矩阵(蛋白为行,伪EV为列) ===
        pseudo_matrix <- do.call(cbind, pseudo_ev_list)
        pseudo_matrix <- as.data.frame(pseudo_matrix)
        pseudo_matrix <- pseudo_matrix[order(rownames(pseudo_matrix)), ]
        
        # ===  SeuratObject ===
        seu <- CreateSeuratObject(counts = pseudo_matrix,
                                  project = sample_name,
                                  min.features = 2,
                                  min.cells = 1)
        seurat_list[[sample_name]] <- seu
        
      }
      
      if (length(seurat_list) >= 2) {
        message("Merging ", length(seurat_list), " Seurat objects...")
        merged_seu <- merge(seurat_list[[1]], y = seurat_list[-1], project = "MergedPseudoEVs")
        merged_seu$orig.ident <- sapply(strsplit(colnames(merged_seu), "_"), `[`, 1)
        merged_seu <- SCTransform(merged_seu, return.only.var.genes = FALSE, verbose = TRUE)
        merged_seu <- RunPCA(merged_seu, npcs = 30, assay = "SCT", verbose = FALSE)
        merged_seu <- RunHarmony(merged_seu, group.by.vars = "orig.ident", plot_convergence = TRUE)
        
        dims_use <- 1:ncol(Embeddings(merged_seu, "harmony"))
        merged_seu <- merged_seu %>%
          RunUMAP(reduction = "harmony", dims = dims_use, n.neighbors = 20, min.dist = 0.2, spread = 1) %>%
          RunTSNE(reduction = "harmony", dims = dims_use, perplexity = 50, learning.rate = 1000, theta = 0.5, check_duplicates = FALSE) %>%
          FindNeighbors(reduction = "harmony", dims = dims_use) %>%
          FindClusters(resolution = 0.4)
        
        Idents(merged_seu) <- "seurat_clusters"
        merged_seu$seurat_clusters  <- factor(merged_seu$seurat_clusters )
        cluster_table <- table(merged_seu$seurat_clusters )
        cluster_prop <- prop.table(cluster_table) * 100
        cluster_labels <- paste0(names(cluster_prop), " (", round(cluster_prop, 1), "%)")
        names(cluster_labels) <- names(cluster_prop)
        merged_seu$cluster_with_pct <- plyr::mapvalues(
          merged_seu$seurat_clusters ,
          from = names(cluster_labels),
          to = cluster_labels
        )
        
        tsne_coords <- Embeddings(merged_seu, "tsne")
        tsne_df <- data.frame(
          cell = rownames(tsne_coords),
          tSNE_1 = tsne_coords[, 1],
          tSNE_2 = tsne_coords[, 2],
          cluster = merged_seu$cluster_with_pct
        )
        #write_json(tsne_df, path = file.path(output_matrix_path, "tsne_results.json"), pretty = TRUE)
        
        p <- DimPlot(
          merged_seu,
          reduction = "tsne",
          group.by = "cluster_with_pct",
          pt.size = 0.5,
          raster = TRUE
        ) +
          ggtitle("t-SNE") +
          theme_minimal() +
          theme(
            panel.background = element_rect(fill = "gray95", color = NA),
            plot.title = element_text(hjust = 0.5, size = 18),
            legend.text = element_text(size = 12)
          )
        
        
        p
      }
    },
    res = 100
  )
}

shinyApp(ui, server)