Spaces:
Sleeping
Sleeping
File size: 15,254 Bytes
d60b1f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 |
import logging
import warnings
import os
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
import transformers
import torch
import gc
from torch.utils.data import DataLoader, TensorDataset
from torch.nn.utils.rnn import pack_padded_sequence
from calc_metrics import calculate_log_sum,calculate_log_last
import torch.nn.functional as F
import logging
import time
import traceback
import datetime
doday=datetime.datetime.now().strftime("%Y-%m-%d")
# 配置日志
extra_info='fill'
# logging.basicConfig(level=logging.INFO,filename='/wangbenyou/chenghao/fersh_bench/log/app.log', filemode='a', format='%(name)s - %(levelname)s - %(message)s')
# logging.basicConfig(level=logging.INFO,filename=f'../log/app_jieduan_{extra_info}{doday}_year.log', filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
import torch
import pdb
import json
paths=[
'/mntcephfs/data/med/fanyaxin/Qwen-7B-Chat',
]
# file_in_data_folder='2024-01-04_18'
# file_in_data_folder='2023-12-31'
file_in_data_folder='2023-12-27'
# file_in_data_folder='2020_100'
# file_in_data_folder='2020'
# file_in_data_folder='2014'
# file_in_data_folder='2017'
# file_in_data_folder='2019'
# file_in_data_folder='2019'
# file_in_data_folder='rephrase_MMLU'
# file_in_data_folder='mock_MMLU'
# mmlu_mock_concat
# not arxiv not year, but rep MMLU
# 你的语料列表
import get_text
# file_dic_list_strings=get_text.file_dic_list_strings
limit_lines_per_file=10
file_dic_list_strings=get_text.get_text_from(file_in_data_folder,limit=limit_lines_per_file)
# file_dic_list_strings=get_text.get_mmlu_rephrase_text(directory='/mntnfs/med_data5/chenghao/fresh_eval/data/mmlu_rephrase_concat/gpt-4-1106-preview/')
# file_dic_list_strings=get_text.get_mmlu_rephrase_text(directory='/mntnfs/med_data5/chenghao/fresh_eval/data/mmlu_mock_concat/gpt-4-1106-preview/')
# file_in_data_folder='2024-01-03'
def get_rwkv_model_tokenizer(model_name):
os.environ['RWKV_JIT_ON'] = '1'
os.environ["RWKV_CUDA_ON"] = '1'
from rwkv.model import RWKV
from rwkv.utils import PIPELINE
model=RWKV(model=model_name, strategy='cuda fp16')
pipeline = PIPELINE(model, r"rwkv_vocab_v20230424")
tokenizer = pipeline.tokenizer
return model,tokenizer
def get_mamba_model_tokenizer(model_name):
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("/mntcephfs/data/med/chenghao/models/gpt-neox-20b_tokenizer")
model = MambaLMHeadModel.from_pretrained(model_name, device=device, dtype=torch.float16)
return model,tokenizer
def get_HF_model_tokenizer(model_name):
if 'llama_hf_13b' in model_name:
tokenizer = transformers.LlamaTokenizer.from_pretrained(model_name, unk_token="<unk>")
else:
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
if 'zephyr' in model_name.lower():
model = AutoModelForCausalLM.from_pretrained(model_name,device_map="auto").eval()
else:
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", trust_remote_code=True).eval()
return model,tokenizer
limit_lines_per_file=10
def run_model_on_dic(config):
config['clear_log_first']=True
logging.info("start up")
paths=config['model_path']
file_dic_list_strings=config['file_dic_list_strings']
detail_log_base=config['detail_log_path']
extract_log_base=config['extract_log_path']
max_sequence_length,max_str_len,limit_lines_per_file=config['max_sequence_length'],config['max_str_len'],config['limit_lines_per_file']
for model_name in tqdm(paths):
model_name=model_name.strip()
tmp_path=model_name[:-1] if model_name[-1]=='/' else model_name
short_model_name=tmp_path.split('/')[-1]
config['detail_log_path']=detail_log_base.replace('TOFILL',f'{short_model_name}')
config['extract_log_path']=extract_log_base.replace('TOFILL',f'{short_model_name}')
if 'clear_log_first' in config.keys() and config['clear_log_first'] is True:
with open( config['extract_log_path'],'w')as f:
f.write('')
with open( config['detail_log_path'],'w')as f:
f.write('')
print(f'\n log cleared! ')
logging.basicConfig(level=logging.INFO,filename=config['detail_log_path'], filemode='a', format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',force=True)
print()
print('model_path',model_name)
print(f'extract_log_path:{config["extract_log_path"]}\ndetail_log_path:{config["detail_log_path"]}')
print()
try:
if config['model_type']=='RWKV':#'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
model,tokenizer=get_rwkv_model_tokenizer(model_name)
elif config['model_type']=='MAMBA':#('mamba' in model_name) or ('MAMBA'in model_name ):
model,tokenizer=get_mamba_model_tokenizer(model_name)
elif config['model_type']=='HF':#'HF' in model_name:
model,tokenizer=get_HF_model_tokenizer(model_name)
print(f'model device:{model.device}')
print('[tokenizer.cls_token]',[tokenizer.cls_token])
print('[tokenizer.sep_token]',[tokenizer.sep_token])
else:
raise Exception('model type not found')
# === get model and tokenizer
for file_name,corpus in file_dic_list_strings.items():
tokenized_corpus=[]
for text in corpus:
text=text[:max_str_len]
if config['model_type']=='RWKV':
#'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
tokenized_corpus.append(tokenizer.encode(text))
elif 'HF' in model_name and ('RWKV' in model_name):
tokenized_corpus.append(tokenizer(text, return_tensors="pt")['input_ids'])
elif ('mamba' in model_name) or ('MAMBA'in model_name ):
device=torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
tokenized_corpus.append(tokenizer(text, return_tensors="pt").input_ids.to(device=device))
else:
tokens = tokenizer.tokenize(text)
if tokenizer.cls_token:# attention here is not [None]
tokens = [tokenizer.cls_token] + tokens
if tokenizer.sep_token:
tokens = tokens +[tokenizer.sep_token]
input_ids = tokenizer.convert_tokens_to_ids(tokens)
tokenized_corpus.append(input_ids)
# tokenized_corpus.append(tokenizer(text, return_tensors="pt")['input_ids'])
processed_sequences = []
# 遍历 tokenized_corpus,截断或补全序列
for sequence in tokenized_corpus:
# print('len(sequence)',len(sequence))
if len(sequence) < max_sequence_length:
pass
# 补全序列
# sequence = sequence + [tokenizer.pad_token_id] * (max_sequence_length - len(sequence))
# print(f'longer {max_sequence_length - len(sequence)}')
elif len(sequence) > max_sequence_length:
# 截断序列
sequence = sequence[:max_sequence_length]
# 将处理后的序列添加到列表中
processed_sequences.append(sequence)
total_loss = 0.0
total_tokens = 0
# pdb.set_trace()
for enu,batch_input_ids in tqdm(enumerate(processed_sequences)):
# if 'test_fun_dev' in config['detail_log_path'] and enu>50:
# print(f'enu:{enu} batch_input_ids: break')
# break
batch_input_ids=torch.tensor(batch_input_ids).unsqueeze(0)
with torch.no_grad():
# 获取模型的输出
# pdb.set_trace()
if config['model_type']=='RWKV':
# if 'HF' not in model_name and (('RWKV' in model_name) or ('rwkv' in model_name )):
# print('rwkv1')
# pdb.set_trace()
# logits = model.forward(batch_input_ids.squeeze().to(torch.float32), None, full_output=True)[0]
logits = model.forward(batch_input_ids.squeeze().long(), None, full_output=True)[0]
# logits = model.forward(batch_input_ids.squeeze(), None, full_output=True)[0]
# print(logits.shape)
'''
tmp=torch.tensor(batch_input_ids).unsqueeze(0)
logits = model.forward(batch_input_ids.squeeze().long(), None)
logits = model.forward(batch_input_ids.long(), None,)[0]
for output in outputs:print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
'''
# loss = torch.nn.functional.cross_entropy(logits[ :-1, :].view(-1, logits.shape[-1]).to(torch.float32), batch_input_ids[0,1:].to(logits.device).view(-1).to(torch.float32), reduction='none')
loss = torch.nn.functional.cross_entropy(logits[ :-1, :].view(-1, logits.shape[-1]).to(torch.float32), batch_input_ids[0,1:].to(logits.device).view(-1), reduction='none')
elif config['model_type']=='MAMBA':
# pdb.set_trace()
mamba_output = model.forward(batch_input_ids[0])#the shape should be like (1,length)
logits = mamba_output.logits
loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[0][:,1:].view(-1), reduction='none')
# pdb.set_trace()
elif config['model_type']=='HF':
if 'HF' in model_name and 'RWKV' in model_name:
# pdb.set_trace()
batch_input_ids=batch_input_ids.to(model.device)
logits = model.forward(batch_input_ids[0]).logits#the shape should be like (1,length)
loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[0][:,1:].view(-1), reduction='none')
'''
batch_input_ids=batch_input_ids.to(model.device)
HuggingFace-Download-Accelerator/
(Pdb) c
/mntnfs/med_data5/chenghao/fresh_eval/src/fun_base_fill_LLM.py:324: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).
'''
else:
outputs = model(batch_input_ids)
# 取出模型的logits
if 'chatglm3-6b' in model_name:
logits = outputs.logits.float()
else:
logits = outputs.logits
loss = torch.nn.functional.cross_entropy(logits[:, :-1, :].view(-1, logits.shape[-1]), batch_input_ids[:,1:].view(-1), reduction='none')
loss_sum = loss.sum()
loss_mean = loss.mean()
losses_list = loss.tolist()
# 准备要写入日志的数据
tmp_dic = {
'model_name': model_name,
'file_name': file_name,
'lengths': len(batch_input_ids[0]),
'length_str':len(corpus[enu][:max_str_len]),
'loss_sum': loss_sum.item(), # 转换为Python标准数据类型
'loss_mean': loss_mean.item(),
'losses_list': losses_list
}
import json
with open(config['detail_log_path'], 'a') as f:
json.dump(tmp_dic, f)
f.write("\n")
total_loss += loss.sum().item()
total_tokens += batch_input_ids.numel()
# 计算每个类别的平均损失
# pdb.set_trace()
average_loss = total_loss / total_tokens
avg_str_loss = total_loss/len(tokenized_corpus)
print(f"{file_name} total loss:", average_loss)
import json
logs = {
"model_name": model_name,
"file_name": file_name,
"processed_sequences": len(processed_sequences),
"average_loss": average_loss,
"avg_str_loss": avg_str_loss
}
# with open(f'/mntnfs/med_data5/chenghao/fresh_eval/log/year_arxiv/j_y_ans_{file_in_data_folder}.json', 'a') as f:
with open(config['extract_log_path'], 'a') as f:
json.dump(logs, f)
f.write("\n")
logging.info(logs)
except Exception as e:
logging.error(f"{model_name}, error:{e} ,detail:{traceback.format_exc()}")
with open(config['extract_log_path'], 'a') as f:
# json.dump(logs, f)
f.write(f"{model_name} failed \n")
print(f"{model_name} failed for {e} detail:{traceback.format_exc()}\n")
if __name__=='__main__':
config={}
print(file_in_data_folder)
file_dic_list_strings=get_text.get_text_from(file_in_data_folder,limit=limit_lines_per_file)
config['max_sequence_length'],config['max_str_len'],config['limit_lines_per_file']=2048,5000,10
config['extract_log_path']=f'/mntnfs/med_data5/chenghao/fresh_eval/log/test_fun_dev/extract.log'
config['detail_log_path']=f'/mntnfs/med_data5/chenghao/fresh_eval/log/test_fun_dev/detail.log'
config['model_path']='/mntnfs/med_data5/liangjuhao/models/TinyLlama-1.1B-Chat-v0.6'#paths[:1]
config['batch']=16
config['model_type']='HF'
print('start',config['model_path'])
config['file_dic_list_strings']=file_dic_list_strings
run_model_on_dic(config) |