Spaces:
Runtime error
Runtime error
File size: 8,282 Bytes
58c234f a0fa3b9 8cb9c25 a0fa3b9 b841152 a0fa3b9 b841152 a0fa3b9 b841152 a0fa3b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
### CSCI 4750/5750- SLU
### Jie Hou, Oct 2022
import gradio as gr
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib.colors as colors
import itertools
from scipy.stats import norm
from scipy import stats
from sklearn.naive_bayes import GaussianNB
def gaussian(x, n, u, s):
#u = x.mean()
#s = x.std()
# divide [x.min(), x.max()] by n
x = np.linspace(x.min(), x.max(), n)
a = ((x - u) ** 2) / (2 * (s ** 2))
y = 1 / (s * np.sqrt(2 * np.pi)) * np.exp(-a)
return x, y, u, s
import gradio as gr
# 1. define mean and standard deviation for class 1
set_fea1_mean_class1 = gr.inputs.Slider(0, 20, step=0.5, default=1, label = 'Feature_1 Mean (Class 1)')
set_fea1_var_class1 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1 Variance (Class 1)')
set_fea2_mean_class1 = gr.inputs.Slider(0, 20, step=0.5, default=2, label = 'Feature_2 Mean (Class 1)')
set_fea2_var_class1 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_2 Variance (Class 1)')
set_fea_covariance_class1 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1_2 Co-Variance (Class 1)')
# 2. define mean and standard deviation for class 2
set_fea1_mean_class2 = gr.inputs.Slider(0, 20, step=0.5, default=5, label = 'Feature_1 Mean (Class 2)')
set_fea1_var_class2 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1 Variance (Class 2)')
set_fea2_mean_class2 = gr.inputs.Slider(0, 20, step=0.5, default=6, label = 'Feature_2 Mean (Class 2)')
set_fea2_var_class2 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_2 Variance (Class 2)')
set_fea_covariance_class2 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1_2 Co-Variance (Class 2)')
# 3. Define the number of data points
set_number_points = gr.inputs.Slider(10, 100, step=5, default=20, label = 'Number of samples in each class')
# 5. set classifier type
set_classifier = gr.inputs.Dropdown(["None", "LDA", "QDA", "NaiveBayes"])
# 6. define output imagem model
set_out_plot_images = gr.outputs.Image(label="Data visualization")
set_out_plot_table = gr.outputs.Dataframe(type='pandas', label ='Simulated Dataset')
def plot_figure_twofeature(N, fea1_u1, fea1_var1, fea2_u1, fea2_var1, covariance1, fea1_u2, fea1_var2, fea2_u2, fea2_var2, covariance2, classifier=None):
#N = 100
import numpy as np
import matplotlib.pyplot as pp
pp.style.use('default')
val = 0. # this is the value where you want the data to appear on the y-axis.
np.random.seed(seed = 3)
mu1 = [fea1_u1, fea2_u1]
sigma1 = [[np.sqrt(fea1_var1), np.sqrt(covariance1)], [np.sqrt(covariance1), np.sqrt(fea2_var1)]]
points_class1_fea1, points_class1_fea2 = np.random.multivariate_normal(mu1, sigma1, N).T
mu2 = [fea1_u2, fea2_u2]
sigma2 = [[np.sqrt(fea1_var2), np.sqrt(covariance2)], [np.sqrt(covariance2), np.sqrt(fea2_var2)]]
points_class2_fea1, points_class2_fea2 = np.random.multivariate_normal(mu2, sigma2, N).T
mu_list = [mu1,mu2]
sigma_list = [sigma1,sigma2]
color_list = ['darkblue','darkgreen']
pd_class1 = pd.DataFrame({'Feature 1 (X)': points_class1_fea1,'Feature 2 (X)': points_class1_fea2, 'Label (Y)': np.repeat(0,len(points_class1_fea1))})
pd_class2 = pd.DataFrame({'Feature 1 (X)': points_class2_fea1,'Feature 2 (X)': points_class2_fea2, 'Label (Y)': np.repeat(1,len(points_class2_fea1))})
pd_all = pd.concat([pd_class1, pd_class2]).reset_index(drop=True)
import numpy as np
#X_data= pd_all['Feature 1 (X)','Feature 2 (X)'].to_numpy().reshape((len(pd_all),2))
#y_labels= pd_all['Label (Y)']
#Setup X and y data
X_data = np.asarray(np.vstack((np.hstack((points_class1_fea1, points_class1_fea2)),np.hstack((points_class2_fea1, points_class2_fea2)))).T)
y_labels = np.hstack((np.zeros(N),np.ones(N)))
print("X_data: ",X_data.shape)
fig = pp.figure(figsize=(8, 6)) # figure size in inches
fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.3, wspace=0.05)
#pp.tick_params(left = False, right = False , labelleft = True ,
# labelbottom = True, bottom = False)
#reference = [stats.uniform.rvs(loc=1, scale = 1) for x in range(N)]
pp.plot(points_class1_fea1, points_class1_fea2 + val, 'x', label = 'Class 1', markersize = 10)
pp.plot(points_class2_fea1, points_class2_fea2 + val, 'o', label = 'Class 2', markersize = 10)
# define x, y limits
#x_min, x_max = X_data[:, 0].min() - 1, X_data[:, 0].max() + 1
#y_min, y_max = X_data[:, 1].min() - 1, X_data[:, 1].max() + 1
x_min, x_max = -5, 15
y_min, y_max = -5, 15
X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, 100),
np.linspace(y_min, y_max, 100))
### draw decision boundary
import numpy as np
from matplotlib import pyplot as plt
from sklearn import neighbors, datasets
from matplotlib.colors import ListedColormap
# Create color maps for 3-class classification problem, as with iris
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00'])
if classifier == 'LDA':
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
model_sk = LinearDiscriminantAnalysis()
model_sk.fit(X_data,y_labels)
X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, N),
np.linspace(y_min, y_max, N))
#Predictions for each point on meshgrid
zz = np.array( [model_sk.predict( [[xx,yy]])[0] for xx, yy in zip(np.ravel(X_grid), np.ravel(Y_grid)) ] )
Z = zz.reshape(X_grid.shape)
pp.pcolormesh(X_grid, Y_grid, Z, cmap=cmap_light, alpha=0.2)
#pp.contour( X_grid, Y_grid, Z, 1, alpha = .3, colors = ('red'))
elif classifier == 'QDA':
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
model_sk = QuadraticDiscriminantAnalysis()
model_sk.fit(X_data,y_labels)
X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, N),
np.linspace(y_min, y_max, N))
#Predictions for each point on meshgrid
zz = np.array( [model_sk.predict( [[xx,yy]])[0] for xx, yy in zip(np.ravel(X_grid), np.ravel(Y_grid)) ] )
Z = zz.reshape(X_grid.shape)
pp.pcolormesh(X_grid, Y_grid, Z, cmap=cmap_light, alpha=0.2)
elif classifier == 'NaiveBayes':
from sklearn.naive_bayes import GaussianNB
model_sk = GaussianNB(priors = None)
model_sk.fit(X_data,y_labels)
X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, N),
np.linspace(y_min, y_max, N))
#Predictions for each point on meshgrid
zz = np.array( [model_sk.predict( [[xx,yy]])[0] for xx, yy in zip(np.ravel(X_grid), np.ravel(Y_grid)) ] )
Z = zz.reshape(X_grid.shape)
pp.pcolormesh(X_grid, Y_grid, Z, cmap=cmap_light, alpha=0.2)
#Reshaping the predicted class into the meshgrid shape
#Plot the contours
print(x_min, x_max)
print(y_min, y_max)
#pp.xlim([x_min-0.8*x_max, x_max+0.8*x_max])
#pp.ylim([y_min-0.8*y_max, y_max+0.8*y_max])
pp.xlim([x_min, x_max])
pp.ylim([y_min, y_max])
pp.xlabel("Feature 1 (X)", size=20)
pp.xticks(fontsize=20)
pp.yticks(fontsize=20)
pp.ylabel("Feature 2 (X)", size=20)
pp.legend(loc='upper right', borderpad=0, handletextpad=0, fontsize = 20)
pp.savefig('plot.png')
return 'plot.png', pd_all
### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
interface = gr.Interface(fn=plot_figure_twofeature, inputs=[set_number_points,set_fea1_mean_class1,set_fea1_var_class1,set_fea2_mean_class1,set_fea2_var_class1,set_fea_covariance_class1,set_fea1_mean_class2,set_fea1_var_class2,set_fea2_mean_class2,set_fea2_var_class2,set_fea_covariance_class2, set_classifier],
outputs=[set_out_plot_images,set_out_plot_table],
examples_per_page = 2,
#examples = get_sample_data(10),
title="CSCI4750/5750 Demo: Web Application for Probabilistic Classifier (Two feature)",
description= "Click examples below for a quick demo",
theme = 'huggingface',
layout = 'vertical', live=True
)
interface.launch(debug=True)
|