File size: 8,282 Bytes
58c234f
 
 
a0fa3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cb9c25
a0fa3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b841152
a0fa3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b841152
a0fa3b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b841152
a0fa3b9
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
### CSCI 4750/5750- SLU
### Jie Hou, Oct 2022

import gradio as gr
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib.colors as colors
import itertools
from scipy.stats import norm
from scipy import stats
from sklearn.naive_bayes import GaussianNB



def gaussian(x, n, u, s):
    #u = x.mean()
    #s = x.std()

    # divide [x.min(), x.max()] by n
    x = np.linspace(x.min(), x.max(), n)

    a = ((x - u) ** 2) / (2 * (s ** 2))
    y = 1 / (s * np.sqrt(2 * np.pi)) * np.exp(-a)

    return x, y, u, s
    
import gradio as gr
# 1. define mean and standard deviation for class 1

set_fea1_mean_class1 = gr.inputs.Slider(0, 20, step=0.5, default=1, label = 'Feature_1 Mean (Class 1)')
set_fea1_var_class1 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1 Variance (Class 1)')

set_fea2_mean_class1 = gr.inputs.Slider(0, 20, step=0.5, default=2, label = 'Feature_2 Mean (Class 1)')
set_fea2_var_class1 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_2 Variance (Class 1)')

set_fea_covariance_class1 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1_2 Co-Variance (Class 1)')

# 2. define mean and standard deviation for class 2

set_fea1_mean_class2 = gr.inputs.Slider(0, 20, step=0.5, default=5, label = 'Feature_1 Mean (Class 2)')
set_fea1_var_class2 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1 Variance (Class 2)')

set_fea2_mean_class2 = gr.inputs.Slider(0, 20, step=0.5, default=6, label = 'Feature_2 Mean (Class 2)')
set_fea2_var_class2 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_2 Variance (Class 2)')

set_fea_covariance_class2 = gr.inputs.Slider(0, 10, step=0.5, default=1.5, label = 'Feature_1_2 Co-Variance (Class 2)')

# 3. Define the number of data points 
set_number_points = gr.inputs.Slider(10, 100, step=5, default=20, label = 'Number of samples in each class')

# 5. set classifier type
set_classifier = gr.inputs.Dropdown(["None", "LDA", "QDA", "NaiveBayes"])

# 6. define output imagem model
set_out_plot_images = gr.outputs.Image(label="Data visualization")

set_out_plot_table = gr.outputs.Dataframe(type='pandas', label ='Simulated Dataset')



def plot_figure_twofeature(N, fea1_u1, fea1_var1, fea2_u1, fea2_var1, covariance1, fea1_u2, fea1_var2, fea2_u2, fea2_var2, covariance2, classifier=None):
  
  
  #N = 100
  import numpy as np
  import matplotlib.pyplot as pp
  pp.style.use('default')
  val = 0. # this is the value where you want the data to appear on the y-axis.

  np.random.seed(seed = 3)

  mu1 = [fea1_u1, fea2_u1]
  sigma1 = [[np.sqrt(fea1_var1), np.sqrt(covariance1)], [np.sqrt(covariance1), np.sqrt(fea2_var1)]]
  points_class1_fea1, points_class1_fea2 = np.random.multivariate_normal(mu1, sigma1, N).T

  mu2 = [fea1_u2, fea2_u2]
  sigma2 = [[np.sqrt(fea1_var2), np.sqrt(covariance2)], [np.sqrt(covariance2), np.sqrt(fea2_var2)]]
  points_class2_fea1, points_class2_fea2 = np.random.multivariate_normal(mu2, sigma2, N).T

  mu_list = [mu1,mu2]
  sigma_list = [sigma1,sigma2]
  color_list = ['darkblue','darkgreen']


  pd_class1 = pd.DataFrame({'Feature 1 (X)': points_class1_fea1,'Feature 2 (X)': points_class1_fea2, 'Label (Y)': np.repeat(0,len(points_class1_fea1))})
  pd_class2 = pd.DataFrame({'Feature 1 (X)': points_class2_fea1,'Feature 2 (X)': points_class2_fea2, 'Label (Y)': np.repeat(1,len(points_class2_fea1))})


  pd_all = pd.concat([pd_class1, pd_class2]).reset_index(drop=True)

  import numpy as np
  #X_data= pd_all['Feature 1 (X)','Feature 2 (X)'].to_numpy().reshape((len(pd_all),2))
  #y_labels= pd_all['Label (Y)']


  #Setup X and y data
  X_data = np.asarray(np.vstack((np.hstack((points_class1_fea1, points_class1_fea2)),np.hstack((points_class2_fea1, points_class2_fea2)))).T)
  y_labels = np.hstack((np.zeros(N),np.ones(N)))

  print("X_data: ",X_data.shape)

  fig = pp.figure(figsize=(8, 6)) # figure size in inches
  fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.3, wspace=0.05) 


  #pp.tick_params(left = False, right = False , labelleft = True ,
  #                labelbottom = True, bottom = False)

  #reference = [stats.uniform.rvs(loc=1, scale = 1) for x in range(N)]
  pp.plot(points_class1_fea1, points_class1_fea2 + val, 'x', label = 'Class 1', markersize = 10)
  pp.plot(points_class2_fea1, points_class2_fea2 + val, 'o', label = 'Class 2', markersize = 10)



  
  # define x, y limits
  #x_min, x_max = X_data[:, 0].min() - 1, X_data[:, 0].max() + 1
  #y_min, y_max = X_data[:, 1].min() - 1, X_data[:, 1].max() + 1

  x_min, x_max = -5, 15
  y_min, y_max = -5, 15
  X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, 100),
                          np.linspace(y_min, y_max, 100))
  


  ### draw decision boundary

  import numpy as np
  from matplotlib import pyplot as plt
  from sklearn import neighbors, datasets
  from matplotlib.colors import ListedColormap

  # Create color maps for 3-class classification problem, as with iris
  cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA'])
  cmap_bold = ListedColormap(['#FF0000', '#00FF00'])


  if classifier == 'LDA':
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    model_sk = LinearDiscriminantAnalysis()
    model_sk.fit(X_data,y_labels)

    X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, N),
                          np.linspace(y_min, y_max, N))
    #Predictions for each point on meshgrid
    zz = np.array(  [model_sk.predict( [[xx,yy]])[0] for xx, yy in zip(np.ravel(X_grid), np.ravel(Y_grid)) ] )

    Z = zz.reshape(X_grid.shape)

    pp.pcolormesh(X_grid, Y_grid, Z, cmap=cmap_light, alpha=0.2)
    #pp.contour( X_grid, Y_grid, Z, 1, alpha = .3, colors = ('red'))

  elif classifier == 'QDA':
    from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
    model_sk = QuadraticDiscriminantAnalysis()
    model_sk.fit(X_data,y_labels)

    X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, N),
                          np.linspace(y_min, y_max, N))
    #Predictions for each point on meshgrid
    zz = np.array(  [model_sk.predict( [[xx,yy]])[0] for xx, yy in zip(np.ravel(X_grid), np.ravel(Y_grid)) ] )

    Z = zz.reshape(X_grid.shape)

    pp.pcolormesh(X_grid, Y_grid, Z, cmap=cmap_light, alpha=0.2)

  elif classifier == 'NaiveBayes':
    from sklearn.naive_bayes import GaussianNB
    model_sk = GaussianNB(priors = None)
    model_sk.fit(X_data,y_labels)

    X_grid, Y_grid = np.meshgrid(np.linspace(x_min, x_max, N),
                          np.linspace(y_min, y_max, N))
    #Predictions for each point on meshgrid
    zz = np.array(  [model_sk.predict( [[xx,yy]])[0] for xx, yy in zip(np.ravel(X_grid), np.ravel(Y_grid)) ] )

    Z = zz.reshape(X_grid.shape)

    pp.pcolormesh(X_grid, Y_grid, Z, cmap=cmap_light, alpha=0.2)


  #Reshaping the predicted class into the meshgrid shape

  #Plot the  contours
  


  print(x_min, x_max)
  print(y_min, y_max)
  #pp.xlim([x_min-0.8*x_max, x_max+0.8*x_max])
  #pp.ylim([y_min-0.8*y_max, y_max+0.8*y_max])
  pp.xlim([x_min, x_max])
  pp.ylim([y_min, y_max])
  pp.xlabel("Feature 1 (X)", size=20)
  pp.xticks(fontsize=20)
  pp.yticks(fontsize=20)
  pp.ylabel("Feature 2 (X)", size=20)
  pp.legend(loc='upper right', borderpad=0, handletextpad=0, fontsize = 20)
  pp.savefig('plot.png')

  return 'plot.png', pd_all


### configure gradio, detailed can be found at https://www.gradio.app/docs/#i_slider
interface = gr.Interface(fn=plot_figure_twofeature, inputs=[set_number_points,set_fea1_mean_class1,set_fea1_var_class1,set_fea2_mean_class1,set_fea2_var_class1,set_fea_covariance_class1,set_fea1_mean_class2,set_fea1_var_class2,set_fea2_mean_class2,set_fea2_var_class2,set_fea_covariance_class2, set_classifier], 
                         outputs=[set_out_plot_images,set_out_plot_table],
                         examples_per_page = 2,
                         #examples = get_sample_data(10), 
                         title="CSCI4750/5750 Demo: Web Application for Probabilistic Classifier (Two feature)", 
                         description= "Click examples below for a quick demo",
                         theme = 'huggingface',
                         layout = 'vertical', live=True
                         )
interface.launch(debug=True)