File size: 9,689 Bytes
57c56ea 460c47b 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 460c47b 57c56ea 2358388 57c56ea 2358388 460c47b 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 57c56ea 2358388 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
#!/usr/bin/python
# coding: utf-8
# Author: LE YUAN
import os
import sys
import math
import model
import torch
import requests
import pickle
import numpy as np
from rdkit import Chem
from collections import defaultdict
fingerprint_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/bond_dict.pickle')
edge_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/edge_dict.pickle')
word_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/sequence_dict.pickle')
def split_sequence(sequence, ngram):
sequence = '-' + sequence + '='
# print(sequence)
# words = [word_dict[sequence[i:i+ngram]] for i in range(len(sequence)-ngram+1)]
words = list()
for i in range(len(sequence)-ngram+1) :
try :
words.append(word_dict[sequence[i:i+ngram]])
except :
word_dict[sequence[i:i+ngram]] = 0
words.append(word_dict[sequence[i:i+ngram]])
return np.array(words)
# return word_dict
def create_atoms(mol):
"""Create a list of atom (e.g., hydrogen and oxygen) IDs
considering the aromaticity."""
# atom_dict = defaultdict(lambda: len(atom_dict))
atoms = [a.GetSymbol() for a in mol.GetAtoms()]
# print(atoms)
for a in mol.GetAromaticAtoms():
i = a.GetIdx()
atoms[i] = (atoms[i], 'aromatic')
atoms = [atom_dict[a] for a in atoms]
# atoms = list()
# for a in atoms :
# try:
# atoms.append(atom_dict[a])
# except :
# atom_dict[a] = 0
# atoms.append(atom_dict[a])
return np.array(atoms)
def create_ijbonddict(mol):
"""Create a dictionary, which each key is a node ID
and each value is the tuples of its neighboring node
and bond (e.g., single and double) IDs."""
# bond_dict = defaultdict(lambda: len(bond_dict))
i_jbond_dict = defaultdict(lambda: [])
for b in mol.GetBonds():
i, j = b.GetBeginAtomIdx(), b.GetEndAtomIdx()
bond = bond_dict[str(b.GetBondType())]
i_jbond_dict[i].append((j, bond))
i_jbond_dict[j].append((i, bond))
return i_jbond_dict
def extract_fingerprints(atoms, i_jbond_dict, radius):
"""Extract the r-radius subgraphs (i.e., fingerprints)
from a molecular graph using Weisfeiler-Lehman algorithm."""
# fingerprint_dict = defaultdict(lambda: len(fingerprint_dict))
# edge_dict = defaultdict(lambda: len(edge_dict))
if (len(atoms) == 1) or (radius == 0):
fingerprints = [fingerprint_dict[a] for a in atoms]
else:
nodes = atoms
i_jedge_dict = i_jbond_dict
for _ in range(radius):
"""Update each node ID considering its neighboring nodes and edges
(i.e., r-radius subgraphs or fingerprints)."""
fingerprints = []
for i, j_edge in i_jedge_dict.items():
neighbors = [(nodes[j], edge) for j, edge in j_edge]
fingerprint = (nodes[i], tuple(sorted(neighbors)))
# fingerprints.append(fingerprint_dict[fingerprint])
# fingerprints.append(fingerprint_dict.get(fingerprint))
try :
fingerprints.append(fingerprint_dict[fingerprint])
except :
fingerprint_dict[fingerprint] = 0
fingerprints.append(fingerprint_dict[fingerprint])
nodes = fingerprints
"""Also update each edge ID considering two nodes
on its both sides."""
_i_jedge_dict = defaultdict(lambda: [])
for i, j_edge in i_jedge_dict.items():
for j, edge in j_edge:
both_side = tuple(sorted((nodes[i], nodes[j])))
# edge = edge_dict[(both_side, edge)]
# edge = edge_dict.get((both_side, edge))
try :
edge = edge_dict[(both_side, edge)]
except :
edge_dict[(both_side, edge)] = 0
edge = edge_dict[(both_side, edge)]
_i_jedge_dict[i].append((j, edge))
i_jedge_dict = _i_jedge_dict
return np.array(fingerprints)
def create_adjacency(mol):
adjacency = Chem.GetAdjacencyMatrix(mol)
return np.array(adjacency)
def dump_dictionary(dictionary, filename):
with open(filename, 'wb') as file:
pickle.dump(dict(dictionary), file)
def load_tensor(file_name, dtype):
return [dtype(d).to(device) for d in np.load(file_name + '.npy', allow_pickle=True)]
class Predictor(object):
def __init__(self, model):
self.model = model
def predict(self, data):
predicted_value = self.model.forward(data)
return predicted_value
# One method to obtain SMILES by PubChem API using the website
def get_smiles(name):
# smiles = redis_cli.get(name)
# if smiles is None:
try :
url = 'https://pubchem.ncbi.nlm.nih.gov/rest/pug/compound/name/%s/property/CanonicalSMILES/TXT' % name
req = requests.get(url)
if req.status_code != 200:
smiles = None
else:
smiles = req.content.splitlines()[0].decode()
# print(smiles)
# redis_cli.set(name, smiles, ex=None)
# print smiles
except :
smiles = None
# name_smiles[name] = smiles
return smiles
def test(file) :
#name = sys.argv[1:][0]
#print(name)
# with open('./input.tsv', 'r') as infile :
with open(file.name, 'r') as infile :
lines = infile.readlines()
fingerprint_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/fingerprint_dict.pickle')
atom_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/atom_dict.pickle')
bond_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/bond_dict.pickle')
word_dict = model.load_pickle('/home/user/app/DLKcat/DeeplearningApproach/Data/input/sequence_dict.pickle')
n_fingerprint = len(fingerprint_dict)
n_word = len(word_dict)
radius=2
ngram=3
dim=10
layer_gnn=3
side=5
window=11
layer_cnn=3
layer_output=3
lr=1e-3
lr_decay=0.5
decay_interval=10
weight_decay=1e-6
iteration=100
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
# torch.manual_seed(1234)
Kcat_model = model.KcatPrediction(device, n_fingerprint, n_word, 2*dim, layer_gnn, window, layer_cnn, layer_output).to(device)
Kcat_model.load_state_dict(torch.load('/home/user/app/DLKcat/DeeplearningApproach/Results/output/all--radius2--ngram3--dim20--layer_gnn3--window11--layer_cnn3--layer_output3--lr1e-3--lr_decay0.5--decay_interval10--weight_decay1e-6--iteration50', map_location=device))
# print(state_dict.keys())
# model.eval()
predictor = Predictor(Kcat_model)
print('It\'s time to start the prediction!')
print('-----------------------------------')
i = 0
with open('./output.tsv', 'w') as outfile :
items = ['Substrate Name', 'Substrate SMILES', 'Protein Sequence', 'Kcat value (1/s)']
outfile.write('\t'.join(items)+'\n')
for line in lines[1:] :
line_item = list()
data = line.strip().split('\t')
# i += 1
# print('This is', i, '---------------------------------------')
# print(data)
name = data[0]
smiles = data[1]
sequence = data[2]
if smiles and smiles != 'None' :
smiles = data[1]
else :
smiles = get_smiles(name)
# print(smiles)
try :
if "." not in smiles :
# i += 1
# print('This is',i)
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
atoms = create_atoms(mol)
# print(atoms)
i_jbond_dict = create_ijbonddict(mol)
# print(i_jbond_dict)
fingerprints = extract_fingerprints(atoms, i_jbond_dict, radius)
# print(fingerprints)
# compounds.append(fingerprints)
adjacency = create_adjacency(mol)
# print(adjacency)
# adjacencies.append(adjacency)
words = split_sequence(sequence,ngram)
# print(words)
# proteins.append(words)
fingerprints = torch.LongTensor(fingerprints)
adjacency = torch.FloatTensor(adjacency)
words = torch.LongTensor(words)
inputs = [fingerprints, adjacency, words]
prediction = predictor.predict(inputs)
Kcat_log_value = prediction.item()
Kcat_value = '%.4f' %math.pow(2,Kcat_log_value)
# print(Kcat_value)
line_item = [name,smiles,sequence,Kcat_value]
outfile.write('\t'.join(line_item)+'\n')
except :
Kcat_value = 'None'
line_item = [name,smiles,sequence,Kcat_value]
outfile.write('\t'.join(line_item)+'\n')
print('Prediction success!')
return "output.tsv"
#if __name__ == '__main__' :
# main()
|