File size: 50,721 Bytes
7352753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987

from typing import Any, Callable, Dict, List, Optional, Tuple, Union
# import seaborn as sns
import matplotlib.pyplot as plt
import torch
from diffusers import StableDiffusionXLPipeline
from typing import Optional, Union, Tuple, List, Callable, Dict
import numpy as np
import copy
import torch.nn.functional as F
from diffusers.loaders import  LoraLoaderMixin, TextualInversionLoaderMixin 
from diffusers.models.attention_processor import ( AttnProcessor2_0, LoRAAttnProcessor2_0, LoRAXFormersAttnProcessor, XFormersAttnProcessor, ) 
from diffusers.utils import (  logging, randn_tensor, replace_example_docstring, ) 
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput 
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
import os
logger = logging.get_logger(__name__)

EXAMPLE_DOC_STRING = """
    Examples:
        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionXLPipeline

        >>> pipe = StableDiffusionXLPipeline.from_pretrained(
        ...     "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
        ... )
        >>> pipe = pipe.to("cuda")

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> image = pipe(prompt).images[0]
        ```
"""


class sdxl(StableDiffusionXLPipeline): 
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    @torch.no_grad()
    def __call__(
        self,
        controller=None,
        prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        guidance_rescale: float = 0.0,
        original_size: Optional[Tuple[int, int]] = None,
        crops_coords_top_left: Tuple[int, int] = (0, 0),
        target_size: Optional[Tuple[int, int]] = None,
        same_init=False,
        x_stars=None,
        prox_guidance=True,
        masa_control=False,
        masa_mask=False,
        masa_start_step=40,
        masa_start_layer=55,
        mask_file=None,
        query_mask_time=[0, 10],
        **kwargs
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
                instead.
            height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (Ξ·) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
                [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
            guidance_rescale (`float`, *optional*, defaults to 0.7):
                Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
                Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `Ο†` in equation 16. of
                [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
                Guidance rescale factor should fix overexposure when using zero terminal SNR.

        Examples:

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
            `tuple. When returning a tuple, the first element is a list with the generated images, and the second
            element is a list of `bool`s denoting whether the corresponding generated image likely represents
            "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
        """
        # 0. Default height and width to unet
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        original_size = original_size or (height, width)
        target_size = target_size or (height, width)

        inv_batch_size = len(latents) if latents is not None else 1
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        )


        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
        )
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None,
        )

        # 4. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)

        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
            same_init=same_init, #ADD
            sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None,
        )
        # 6. Prepare extra step kwargs.
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7. Prepare added time ids & embeddings
        add_text_embeds = pooled_prompt_embeds
        add_time_ids = self._get_add_time_ids(
            original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
        )

        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
            add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
            add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)

        prompt_embeds = prompt_embeds.to(device)
        add_text_embeds = add_text_embeds.to(device)
        add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    # CHANGE START
                    score_delta,mask_edit=self.prox_regularization(
                        noise_pred_uncond,
                        noise_pred_text,
                        i,
                        t,
                        prox_guidance=prox_guidance,
                    )
                    if mask_edit is not None:
                        a = 1
                    noise_pred = noise_pred_uncond + guidance_scale * score_delta
                    # CHANGE END

                if do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
              
                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                # ADD START
                latents = self.proximal_guidance(
                    i,
                    t,
                    latents,
                    mask_edit,
                    prox_guidance=prox_guidance,
                    dtype=self.unet.dtype,
                    x_stars=x_stars,
                    controller=controller,
                    sample_ref_match=kwargs['sample_ref_match'] if 'sample_ref_match' in kwargs else None,
                    inv_batch_size=inv_batch_size,
                    only_inversion_align=kwargs['only_inversion_align'] if 'only_inversion_align' in kwargs else False,
                )
                # ADD END
                if controller is not None:
                    latents = controller.step_callback(latents)
                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        callback(i, t, latents)

        # make sure the VAE is in float32 mode, as it overflows in float16
        self.vae.to(dtype=torch.float32)

        use_torch_2_0_or_xformers = isinstance(
            self.vae.decoder.mid_block.attentions[0].processor,
            (
                AttnProcessor2_0,
                XFormersAttnProcessor,
                LoRAXFormersAttnProcessor,
                LoRAAttnProcessor2_0,
            ),
        )
        # if xformers or torch_2_0 is used attention block does not need
        # to be in float32 which can save lots of memory
        if use_torch_2_0_or_xformers:
            self.vae.post_quant_conv.to(latents.dtype)
            self.vae.decoder.conv_in.to(latents.dtype)
            self.vae.decoder.mid_block.to(latents.dtype)
        else:
            latents = latents.float()

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
        else:
            image = latents
            return StableDiffusionXLPipelineOutput(images=image)

        image = self.watermark.apply_watermark(image)
        image = self.image_processor.postprocess(image, output_type=output_type)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()

        return image
    
    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None,same_init=False,sample_ref_match=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )
        if sample_ref_match is not None:
            new_latents=randn_tensor((batch_size,*shape[1:]), generator=generator, device=device, dtype=dtype)
            for key,value in sample_ref_match.items():
                new_latents[key]=latents[value].clone()
            latents=new_latents
        else:
            if same_init is True:
                if latents is None:
                    latents = randn_tensor((1,*shape[1:]), generator=generator, device=device, dtype=dtype).expand(shape).to(device)
                else:
                    if batch_size>1 and latents.shape[0]==1:
                        latents=latents.expand(shape).to(device)
                    else:
                        latents = latents.to(device)
            else: 
                if latents is None:
                    latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
                else:
                    latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents
    
    def encode_prompt(
        self,
        prompt,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
        sample_ref_match=None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            # textual inversion: procecss multi-vector tokens if necessary
            prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(
                    text_input_ids.to(device),
                    output_hidden_states=True,
                )

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                prompt_embeds = prompt_embeds.hidden_states[-2]

                bs_embed, seq_len, _ = prompt_embeds.shape
                # duplicate text embeddings for each generation per prompt, using mps friendly method
                prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
                prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
        if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        elif do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            uncond_tokens: List[str]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt
            

            negative_prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                # textual inversion: procecss multi-vector tokens if necessary
                if isinstance(self, TextualInversionLoaderMixin):
                    uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    uncond_tokens,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                if do_classifier_free_guidance:
                    # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
                    seq_len = negative_prompt_embeds.shape[1]

                    negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)

                    negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
                    negative_prompt_embeds = negative_prompt_embeds.view(
                        batch_size * num_images_per_prompt, seq_len, -1
                    )

                    # For classifier free guidance, we need to do two forward passes.
                    # Here we concatenate the unconditional and text embeddings into a single batch
                    # to avoid doing two forward passes

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        bs_embed = pooled_prompt_embeds.shape[0]
        # ADD START
        if sample_ref_match is not None:
            new_negative_prompt_embeds=torch.zeros_like(prompt_embeds)
            new_negative_pooled_prompt_embeds=torch.zeros_like(pooled_prompt_embeds)
            for key,value in sample_ref_match.items():
                new_negative_prompt_embeds[key]=negative_prompt_embeds[value].clone()
                new_negative_pooled_prompt_embeds[key]=negative_pooled_prompt_embeds[value].clone()
            negative_prompt_embeds=new_negative_prompt_embeds
            negative_pooled_prompt_embeds=new_negative_pooled_prompt_embeds
        else:
            if negative_pooled_prompt_embeds.shape[0]==1 and bs_embed!=1:
                negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.repeat(bs_embed,1)
            if negative_prompt_embeds.shape[0]==1 and bs_embed!=1:
                negative_prompt_embeds=negative_prompt_embeds.repeat(bs_embed,1,1)
        # ADD END
        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
          
        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def encode_prompt_not_zero_uncond(
        self,
        prompt,
        device: Optional[torch.device] = None,
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt=None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        lora_scale: Optional[float] = None,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
             prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
                If not provided, pooled text embeddings will be generated from `prompt` input argument.
            negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
                Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
                input argument.
            lora_scale (`float`, *optional*):
                A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
        """
        device = device or self._execution_device

        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, LoraLoaderMixin):
            self._lora_scale = lora_scale

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        # Define tokenizers and text encoders
        tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
        text_encoders = (
            [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
        )

        if prompt_embeds is None:
            # textual inversion: procecss multi-vector tokens if necessary
            prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                if isinstance(self, TextualInversionLoaderMixin):
                    prompt = self.maybe_convert_prompt(prompt, tokenizer)

                text_inputs = tokenizer(
                    prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )
                text_input_ids = text_inputs.input_ids
                untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

                if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                    text_input_ids, untruncated_ids
                ):
                    removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1])
                    logger.warning(
                        "The following part of your input was truncated because CLIP can only handle sequences up to"
                        f" {tokenizer.model_max_length} tokens: {removed_text}"
                    )

                prompt_embeds = text_encoder(text_input_ids.to(device),output_hidden_states=True)

                # We are only ALWAYS interested in the pooled output of the final text encoder
                pooled_prompt_embeds = prompt_embeds[0]
                prompt_embeds = prompt_embeds.hidden_states[-2]

                bs_embed, seq_len, _ = prompt_embeds.shape
                # duplicate text embeddings for each generation per prompt, using mps friendly method
                prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
                prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

                prompt_embeds_list.append(prompt_embeds)

            prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            negative_prompt = negative_prompt or ""
            uncond_tokens: List[str]
            if prompt is not None and isinstance(prompt,List) and negative_prompt == "":
                negative_prompt = ["" for i in range(len(prompt))]
            if prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            negative_prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                # textual inversion: procecss multi-vector tokens if necessary
                if isinstance(self, TextualInversionLoaderMixin):
                    uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)

                max_length = prompt_embeds.shape[1]
                uncond_input = tokenizer(
                    uncond_tokens,
                    padding="max_length",
                    max_length=max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(
                    uncond_input.input_ids.to(device),
                    output_hidden_states=True,
                )
                # We are only ALWAYS interested in the pooled output of the final text encoder
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]

                if do_classifier_free_guidance:
                    # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
                    seq_len = negative_prompt_embeds.shape[1]

                    negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)

                    negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
                    negative_prompt_embeds = negative_prompt_embeds.view(
                        batch_size * num_images_per_prompt, seq_len, -1
                    )

                    # For classifier free guidance, we need to do two forward passes.
                    # Here we concatenate the unconditional and text embeddings into a single batch
                    # to avoid doing two forward passes

                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        bs_embed = pooled_prompt_embeds.shape[0]
        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def prox_regularization(
        self,
        noise_pred_uncond,
        noise_pred_text,
        i,
        t,
        prox_guidance=False,
        prox=None,
        quantile=0.75,
        recon_t=400,
        dilate_radius=2,
    ):
        if prox_guidance is True:
            mask_edit = None
            if prox == 'l1':
                score_delta = (noise_pred_text - noise_pred_uncond).float()
                if quantile > 0:
                    threshold = score_delta.abs().quantile(quantile)
                else:
                    threshold = -quantile  # if quantile is negative, use it as a fixed threshold
                score_delta -= score_delta.clamp(-threshold, threshold)
                score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta)
                score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta)
                if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t):
                    mask_edit = (score_delta.abs() > threshold).float()
                    if dilate_radius > 0:
                        radius = int(dilate_radius)
                        mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius)
            elif prox == 'l0':
                score_delta = (noise_pred_text - noise_pred_uncond).float()
                if quantile > 0:
                    threshold = score_delta.abs().quantile(quantile)
                else:
                    threshold = -quantile  # if quantile is negative, use it as a fixed threshold
                score_delta -= score_delta.clamp(-threshold, threshold)
                if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t):
                    mask_edit = (score_delta.abs() > threshold).float()
                    if dilate_radius > 0:
                        radius = int(dilate_radius)
                        mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius)
            elif prox==None:
                score_delta = (noise_pred_text - noise_pred_uncond).float()
                if quantile > 0:
                    threshold = score_delta.abs().quantile(quantile)
                else:
                    threshold = -quantile  # if quantile is negative, use it as a fixed threshold
                if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t):
                    mask_edit = (score_delta.abs() > threshold).float()
                    if dilate_radius > 0:
                        radius = int(dilate_radius)
                        mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius)
            else:
                raise NotImplementedError
            return score_delta,mask_edit
        else:
            return noise_pred_text - noise_pred_uncond,None

    def proximal_guidance(
        self,
        i,
        t,
        latents,
        mask_edit,
        dtype,
        prox_guidance=False,
        recon_t=400,
        recon_end=0,
        recon_lr=0.1,
        x_stars=None, 
        controller=None,
        sample_ref_match=None,
        inv_batch_size=1,
        only_inversion_align=False,
    ):
        if mask_edit is not None and prox_guidance and (recon_t > recon_end and t < recon_t) or (recon_t < -recon_end and t > -recon_t):
            if controller.layer_fusion.remove_mask is not None:
                fix_mask = copy.deepcopy(controller.layer_fusion.remove_mask)
                mask_edit[1] = (mask_edit[1]+fix_mask).clamp(0,1) 
                if mask_edit.shape[0] > 2:
                    mask_edit[2].fill_(1) 
            recon_mask = 1 - mask_edit
            target_latents=x_stars[len(x_stars)-i-2]
            new_target_latents=torch.zeros_like(latents)
            for key,value in sample_ref_match.items():
                new_target_latents[key]=target_latents[value].clone() 
            latents = latents - recon_lr * (latents - new_target_latents) * recon_mask
        return latents.to(dtype)  
    
def slerp(val, low, high):
    """ taken from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/4
    """
    low_norm = low/torch.norm(low, dim=1, keepdim=True)
    high_norm = high/torch.norm(high, dim=1, keepdim=True)
    omega = torch.acos((low_norm*high_norm).sum(1))
    so = torch.sin(omega)
    res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high
    return res


def slerp_tensor(val, low, high):
    shape = low.shape
    res = slerp(val, low.flatten(1), high.flatten(1))
    return res.reshape(shape)


def dilate(image, kernel_size, stride=1, padding=0):
    """
    Perform dilation on a binary image using a square kernel.
    """
    # Ensure the image is binary
    assert image.max() <= 1 and image.min() >= 0
    
    # Get the maximum value in each neighborhood
    dilated_image = F.max_pool2d(image, kernel_size, stride, padding)
    
    return dilated_image

def exec_classifier_free_guidance(model,latents,controller,t,guidance_scale,
                                  do_classifier_free_guidance,noise_pred,guidance_rescale,
                                  prox=None, quantile=0.75,image_enc=None, recon_lr=0.1, recon_t=400,recon_end_t=0,
                                  inversion_guidance=False, reconstruction_guidance=False,x_stars=None, i=0,
                                    use_localblend_mask=False,
                                  save_heatmap=False,**kwargs):
    # perform guidance
    if do_classifier_free_guidance:
        noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
        #noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
        if prox is None and inversion_guidance is True:
            prox = 'l1'
        step_kwargs = {
            'ref_image': None,
            'recon_lr': 0,
            'recon_mask': None,
        }
        mask_edit = None
        if prox is not None:
            if prox == 'l1':
                score_delta = (noise_pred_text - noise_pred_uncond).float()
                if quantile > 0:
                    threshold = score_delta.abs().quantile(quantile)
                else:
                    threshold = -quantile  # if quantile is negative, use it as a fixed threshold
                score_delta -= score_delta.clamp(-threshold, threshold)
                score_delta = torch.where(score_delta > 0, score_delta-threshold, score_delta)
                score_delta = torch.where(score_delta < 0, score_delta+threshold, score_delta)
                if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t):
                    step_kwargs['ref_image'] = image_enc
                    step_kwargs['recon_lr'] = recon_lr
                    score_delta_norm=score_delta.abs()
                    score_delta_norm=(score_delta_norm - score_delta_norm.min ()) / (score_delta_norm.max () - score_delta_norm.min ())
                    mask_edit = (score_delta.abs() > threshold).float()
                    if save_heatmap and i%10==0:
                        for kk in range(4):
                            sns.heatmap(mask_edit[1][kk].clone().cpu(), cmap='coolwarm')
                            plt.savefig(f'./vis/prox_inv/heatmap1_mask_{i}_{kk}.png')
                            plt.clf()
                    if kwargs.get('dilate_mask', 2) > 0:
                        radius = int(kwargs.get('dilate_mask', 2))
                        mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius)
                    if save_heatmap and i%10==0:
                        for kk in range(4):
                            sns.heatmap(mask_edit[1][kk].clone().cpu(), cmap='coolwarm')
                            plt.savefig(f'./vis/prox_inv/heatmap1_mask_dilate_{i}_{kk}.png')
                            plt.clf()
                    step_kwargs['recon_mask'] = 1 - mask_edit
            elif prox == 'l0':
                score_delta = (noise_pred_text - noise_pred_uncond).float()
                if quantile > 0:
                    threshold = score_delta.abs().quantile(quantile)
                else:
                    threshold = -quantile  # if quantile is negative, use it as a fixed threshold
                score_delta -= score_delta.clamp(-threshold, threshold)
                if (recon_t > 0 and t < recon_t) or (recon_t < 0 and t > -recon_t):
                    step_kwargs['ref_image'] = image_enc
                    step_kwargs['recon_lr'] = recon_lr
                    mask_edit = (score_delta.abs() > threshold).float()
                    if kwargs.get('dilate_mask', 2) > 0:
                        radius = int(kwargs.get('dilate_mask', 2))
                        mask_edit = dilate(mask_edit.float(), kernel_size=2*radius+1, padding=radius)
                    step_kwargs['recon_mask'] = 1 - mask_edit
            else:
                raise NotImplementedError
            noise_pred = (noise_pred_uncond + guidance_scale * score_delta).to(model.unet.dtype)
        else:
            noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
            
    if do_classifier_free_guidance and guidance_rescale > 0.0:
    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
        noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
    if reconstruction_guidance:
        kwargs.update(step_kwargs)
    latents = model.scheduler.step(noise_pred, t, latents, **kwargs, return_dict=False)[0]
    if mask_edit is not None and inversion_guidance and (recon_t > recon_end_t and t < recon_t) or (recon_t < recon_end_t and t > -recon_t):
        if use_localblend_mask:
            assert hasattr(controller,"layer_fusion")
            if save_heatmap and i%10==0:
                sns.heatmap(controller.layer_fusion.mask[0][0].clone().cpu(), cmap='coolwarm')
                plt.savefig(f'./vis/prox_inv/heatmap0_localblendmask_{i}.png')
                plt.clf()
                sns.heatmap(controller.layer_fusion.mask[1][0].clone().cpu(), cmap='coolwarm')
                plt.savefig(f'./vis/prox_inv/heatmap1_localblendmask_{i}.png')
                plt.clf()
            layer_fusion_mask=controller.layer_fusion.mask.float()
            layer_fusion_mask[0]=layer_fusion_mask[1]
            recon_mask=1-layer_fusion_mask.expand_as(latents)
        else:
            recon_mask = 1 - mask_edit
        target_latents=x_stars[len(x_stars)-i-2].expand_as(latents)
        # if target_latentsζœ‰ε››η»΄
        if len(target_latents.shape)==4:
            target_latents=target_latents[0]
        latents = latents - recon_lr * (latents - target_latents) * recon_mask
    # controller
    if controller is not None:
        latents = controller.step_callback(latents)
    return latents.to(model.unet.dtype)