Spaces:
Runtime error
Runtime error
File size: 11,011 Bytes
7352753 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import numpy as np
import gradio as gr
import cv2
from copy import deepcopy
import torch
from torchvision import transforms
from PIL import Image, ImageDraw, ImageFont
from sam.efficient_sam.build_efficient_sam import build_efficient_sam_vits
from src.utils.utils import resize_numpy_image
sam = build_efficient_sam_vits()
def show_point_or_box(image, global_points):
# for point
if len(global_points) == 1:
image = cv2.circle(image, global_points[0], 10, (0, 0, 255), -1)
# for box
if len(global_points) == 2:
p1 = global_points[0]
p2 = global_points[1]
image = cv2.rectangle(image,(int(p1[0]),int(p1[1])),(int(p2[0]),int(p2[1])),(0,0,255),2)
return image
def segment_with_points(
image,
original_image,
global_points,
global_point_label,
evt: gr.SelectData,
img_direction,
save_dir = "./tmp"
):
if original_image is None:
original_image = image
else:
image = original_image
if img_direction is None:
img_direction = original_image
x, y = evt.index[0], evt.index[1]
image_path = None
mask_path = None
if len(global_points) == 0:
global_points.append([x, y])
global_point_label.append(2)
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label
elif len(global_points) == 1:
global_points.append([x, y])
global_point_label.append(3)
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2 and y1 >= y2:
global_points[0][0] = x1
global_points[0][1] = y2
global_points[1][0] = x2
global_points[1][1] = y1
elif x1 >= x2 and y1 < y2:
global_points[0][0] = x2
global_points[0][1] = y1
global_points[1][0] = x1
global_points[1][1] = y2
elif x1 >= x2 and y1 >= y2:
global_points[0][0] = x2
global_points[0][1] = y2
global_points[1][0] = x1
global_points[1][1] = y1
image_with_point = show_point_or_box(image.copy(), global_points)
# data process
input_point = np.array(global_points)
input_label = np.array(global_point_label)
pts_sampled = torch.reshape(torch.tensor(input_point), [1, 1, -1, 2])
pts_labels = torch.reshape(torch.tensor(input_label), [1, 1, -1])
img_tensor = transforms.ToTensor()(image)
# sam
predicted_logits, predicted_iou = sam(
img_tensor[None, ...],
pts_sampled,
pts_labels,
)
mask = torch.ge(predicted_logits[0, 0, 0, :, :], 0).float().cpu().detach().numpy()
mask_image = (mask*255.).astype(np.uint8)
return image_with_point, original_image, mask_image, global_points, global_point_label
else:
global_points=[[x, y]]
global_point_label=[2]
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label
def segment_with_points_paste(
image,
original_image,
global_points,
global_point_label,
image_b,
evt: gr.SelectData,
dx,
dy,
resize_scale
):
if original_image is None:
original_image = image
else:
image = original_image
x, y = evt.index[0], evt.index[1]
if len(global_points) == 0:
global_points.append([x, y])
global_point_label.append(2)
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label, None
elif len(global_points) == 1:
global_points.append([x, y])
global_point_label.append(3)
x1, y1 = global_points[0]
x2, y2 = global_points[1]
if x1 < x2 and y1 >= y2:
global_points[0][0] = x1
global_points[0][1] = y2
global_points[1][0] = x2
global_points[1][1] = y1
elif x1 >= x2 and y1 < y2:
global_points[0][0] = x2
global_points[0][1] = y1
global_points[1][0] = x1
global_points[1][1] = y2
elif x1 >= x2 and y1 >= y2:
global_points[0][0] = x2
global_points[0][1] = y2
global_points[1][0] = x1
global_points[1][1] = y1
image_with_point = show_point_or_box(image.copy(), global_points)
# data process
input_point = np.array(global_points)
input_label = np.array(global_point_label)
pts_sampled = torch.reshape(torch.tensor(input_point), [1, 1, -1, 2])
pts_labels = torch.reshape(torch.tensor(input_label), [1, 1, -1])
img_tensor = transforms.ToTensor()(image)
# sam
predicted_logits, predicted_iou = sam(
img_tensor[None, ...],
pts_sampled,
pts_labels,
)
mask = torch.ge(predicted_logits[0, 0, 0, :, :], 0).float().cpu().detach().numpy()
mask_uint8 = (mask*255.).astype(np.uint8)
return image_with_point, original_image, paste_with_mask_and_offset(image, image_b, mask_uint8, dx, dy, resize_scale), global_points, global_point_label, mask_uint8
else:
global_points=[[x, y]]
global_point_label=[2]
image_with_point= show_point_or_box(image.copy(), global_points)
return image_with_point, original_image, None, global_points, global_point_label, None
def paste_with_mask_and_offset(image_a, image_b, mask, x_offset=0, y_offset=0, delta=1):
try:
numpy_mask = np.array(mask)
y_coords, x_coords = np.nonzero(numpy_mask)
x_min = x_coords.min()
x_max = x_coords.max()
y_min = y_coords.min()
y_max = y_coords.max()
target_center_x = int((x_min + x_max) / 2)
target_center_y = int((y_min + y_max) / 2)
image_a = Image.fromarray(image_a)
image_b = Image.fromarray(image_b)
mask = Image.fromarray(mask)
if image_a.size != mask.size:
mask = mask.resize(image_a.size)
cropped_image = Image.composite(image_a, Image.new('RGBA', image_a.size, (0, 0, 0, 0)), mask)
x_b = int(target_center_x * (image_b.width / cropped_image.width))
y_b = int(target_center_y * (image_b.height / cropped_image.height))
x_offset = x_offset - int((delta - 1) * x_b)
y_offset = y_offset - int((delta - 1) * y_b)
cropped_image = cropped_image.resize(image_b.size)
new_size = (int(cropped_image.width * delta), int(cropped_image.height * delta))
cropped_image = cropped_image.resize(new_size)
image_b.putalpha(128)
result_image = Image.new('RGBA', image_b.size, (0, 0, 0, 0))
result_image.paste(image_b, (0, 0))
result_image.paste(cropped_image, (x_offset, y_offset), mask=cropped_image)
return result_image
except:
return None
def upload_image_move(img, original_image):
if original_image is not None:
return original_image
else:
return img
def fun_clear(*args):
result = []
for arg in args:
if isinstance(arg, list):
result.append([])
else:
result.append(None)
return tuple(result)
def clear_points(img):
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
return [], masked_img
def get_point(img, sel_pix, evt: gr.SelectData):
sel_pix.append(evt.index)
points = []
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
else:
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
points.append(tuple(point))
if len(points) == 2:
cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
points = []
return img if isinstance(img, np.ndarray) else np.array(img)
def calculate_translation_percentage(ori_shape, selected_points):
dx = selected_points[1][0] - selected_points[0][0]
dy = selected_points[1][1] - selected_points[0][1]
dx_percentage = dx / ori_shape[1]
dy_percentage = dy / ori_shape[0]
return dx_percentage, dy_percentage
def get_point_move(original_image, img, sel_pix, evt: gr.SelectData):
if original_image is not None:
img = original_image.copy()
else:
original_image = img.copy()
if len(sel_pix)<2:
sel_pix.append(evt.index)
else:
sel_pix = [evt.index]
points = []
dx, dy = 0, 0
for idx, point in enumerate(sel_pix):
if idx % 2 == 0:
cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
else:
cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
points.append(tuple(point))
if len(points) == 2:
cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
ori_shape = original_image.shape
dx, dy = calculate_translation_percentage(original_image.shape, sel_pix)
points = []
img = np.array(img)
return img, original_image, sel_pix, dx, dy
def store_img(img):
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
return image, masked_img, mask
def store_img_move(img, mask=None):
if mask is not None:
image = img["image"]
return image, None, mask
image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
if mask.sum() > 0:
mask = np.uint8(mask > 0)
masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
else:
masked_img = image.copy()
return image, masked_img, (mask*255.).astype(np.uint8)
def mask_image(image, mask, color=[255,0,0], alpha=0.5, max_resolution=None):
""" Overlay mask on image for visualization purpose.
Args:
image (H, W, 3) or (H, W): input image
mask (H, W): mask to be overlaid
color: the color of overlaid mask
alpha: the transparency of the mask
"""
if max_resolution is not None:
image, _ = resize_numpy_image(image, max_resolution*max_resolution)
mask = cv2.resize(mask, (image.shape[1], image.shape[0]),interpolation=cv2.INTER_NEAREST)
out = deepcopy(image)
img = deepcopy(image)
img[mask == 1] = color
out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
contours = cv2.findContours(np.uint8(deepcopy(mask)), cv2.RETR_TREE,
cv2.CHAIN_APPROX_SIMPLE)[-2:]
return out |